
graphtools Documentation
Release 1.5.2

Scott Gigante and Jay Stanley, Yale University

Aug 10, 2020

Contents

1 Installation 3
1.1 Installation with pip . 3
1.2 Installation from source . 3

2 Reference 5
2.1 API . 5
2.2 Graph Classes . 7
2.3 Base Classes . 112
2.4 Utilities . 129

3 Quick Start 131

4 Help 133

Bibliography 135

Python Module Index 137

Index 139

i

ii

graphtools Documentation, Release 1.5.2

Tools for building and manipulating graphs in Python.

Contents 1

graphtools Documentation, Release 1.5.2

2 Contents

CHAPTER 1

Installation

1.1 Installation with pip

Install graphtools using:

pip install --user graphtools

1.2 Installation from source

Install from source using:

git clone git://github.com/KrishnaswamyLab/graphtools.git
cd graphtools
python setup.py install --user

3

graphtools Documentation, Release 1.5.2

4 Chapter 1. Installation

CHAPTER 2

Reference

2.1 API

graphtools.api.Graph(data, n_pca=None, rank_threshold=None, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0, knn_max=None, anisotropy=0,
distance=’euclidean’, thresh=0.0001, kernel_symm=’+’, theta=None,
precomputed=None, beta=1, sample_idx=None, adaptive_k=None,
n_landmark=None, n_svd=100, n_jobs=-1, verbose=False, ran-
dom_state=None, graphtype=’auto’, use_pygsp=False, initialize=True,
**kwargs)

Create a graph built on data.

Automatically selects the appropriate DataGraph subclass based on chosen parameters. Selection criteria: - if
graphtype is given, this will be respected - otherwise: – if sample_idx is given, an MNNGraph will be created –
if precomputed is not given, and either decay is None or thresh is given, a kNNGraph will be created - otherwise,
a TraditionalGraph will be created.

Incompatibilities: - MNNGraph and kNNGraph cannot be precomputed - kNNGraph and TraditionalGraph do
not accept sample indices

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix. TODO: accept pandas dataframes’

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None, False, 0], uses the original data. If ‘auto’ or
True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead
of PCA TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. If ‘auto’, this threshold is s_max * eps *
max(n_samples, n_features) where s_max is the maximum singular value of the data matrix
and eps is numerical precision. [press2007].

5

graphtools Documentation, Release 1.5.2

• knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to
build the graph

• decay (int or None, optional (default: 40)) – Rate of alpha decay to use. If None, alpha
decay is not used and a vanilla k-Nearest Neighbors graph is returned.

• bandwidth (float, list-like,‘callable‘, or None, optional (default: None)) – Fixed
bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like
(shape=[n_samples]) of bandwidths for each sample, or a callable that takes in an n x n
distance matrix and returns a a single value or list-like of length n (shape=[n_samples])

• bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

• knn_max (int or None, optional (default : None)) – Maximum number of neighbors with
nonzero affinity

• anisotropy (float, optional (default: 0)) – Level of anisotropy between
0 and 1 (alpha in Coifman & Lafon, 2006)

• distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance
can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has
even more choices

• thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay
kernel. All affinities below thresh will be set to zero in order to save on time and memory
constraints.

• kernel_symm (string, optional (default: '+')) – Defines method of
kernel symmetrization. ‘+’ : additive ‘*’ : multiplicative ‘mnn’ : min-max MNN sym-
metrization ‘none’ : no symmetrization

• theta (float (default: None)) – Min-max symmetrization constant or matrix.
Only used if kernel_symm=’mnn’. K = theta * min(K, K.T) + (1 - theta) * max(K, K.T)

• precomputed ({‘distance’, ‘affinity’, ‘adjacency’, None}, optional (default: None)) – If
the graph is precomputed, this variable denotes which graph matrix is provided as data.
Only one of precomputed and n_pca can be set.

• beta (float, optional(default: 1)) – Multiply between - batch connections
by beta

• sample_idx (array-like) – Batch index for MNN kernel

• adaptive_k ({‘min’, ‘mean’, ‘sqrt’, ‘none’} (default: None)) – Weights MNN kernel
adaptively using the number of cells in each sample according to the selected method.

• n_landmark (int, optional (default: 2000)) – number of landmarks to use

• n_svd (int, optional (default: 100)) – number of SVD components to use for spectral
clustering

• random_state (int or None, optional (default: None)) – Random state for random PCA

• verbose (bool, optional (default: True)) – Verbosity. TODO: should this be an integer
instead to allow multiple levels of verbosity?

• n_jobs (int, optional (default : 1)) – The number of jobs to use for the computation. If -1
all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful
for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2,
all CPUs but one are used

• graphtype ({'exact', 'knn', 'mnn', 'auto'} (Default: 'auto'))
– Manually selects graph type. Only recommended for expert users

6 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

• use_pygsp (bool (Default: False)) – If true, inherits from pygsp.graphs.Graph.

• initialize (bool (Default: True)) – If True, initialize the kernel matrix on instantiation

• **kwargs (extra arguments for pygsp.graphs.Graph) –

Returns G

Return type DataGraph

Raises ValueError : if selected parameters are incompatible.

References

graphtools.api.from_igraph(G, attribute=’weight’, **kwargs)
Convert an igraph.Graph to a graphtools.Graph

Creates a graphtools.graphs.TraditionalGraph with a precomputed adjacency matrix

Parameters

• G (igraph.Graph) – Graph to be converted

• attribute (str, optional (default: "weight")) – attribute containing
edge weights, if any. If None, unweighted graph is built

• kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.graphs.TraditionalGraph

graphtools.api.read_pickle(path)
Load pickled Graphtools object (or any object) from file.

Parameters path (str) – File path where the pickled object will be loaded.

2.2 Graph Classes

class graphtools.graphs.LandmarkGraph(data, n_landmark=2000, n_svd=100, **kwargs)
Bases: graphtools.base.DataGraph

Landmark graph

Adds landmarking feature to any data graph by taking spectral clusters and building a ‘landmark operator’ from
clusters to samples and back to clusters. Any transformation on the landmark kernel is trivially extended to the
data space by multiplying by the transition matrix.

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix., pandas.DataFrame, pandas.SparseDataFrame.

• n_landmark (int, optional (default: 2000)) – number of landmarks to use

• n_svd (int, optional (default: 100)) – number of SVD components to use for spectral
clustering

landmark_op
Landmark operator. Can be treated as a diffusion operator between landmarks.

Type array-like, shape=[n_landmark, n_landmark]

2.2. Graph Classes 7

graphtools Documentation, Release 1.5.2

transitions
Transition probabilities between samples and landmarks.

Type array-like, shape=[n_samples, n_landmark]

clusters
Private attribute. Cluster assignments for each sample.

Type array-like, shape=[n_samples]

Examples

>>> G = graphtools.Graph(data, n_landmark=1000)
>>> X_landmark = transform(G.landmark_op)
>>> X_full = G.interpolate(X_landmark)

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y)
Build a kernel from new input data Y to the self.data

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises

• ValueError: if this Graph is not capable of extension or

• if the supplied data is the wrong shape

build_landmark_op()
Build the landmark operator

8 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

2.2. Graph Classes 9

graphtools Documentation, Release 1.5.2

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: - n_landmark - n_svd

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

10 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

2.2. Graph Classes 11

graphtools Documentation, Release 1.5.2

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.MNNGraph(data, sample_idx, knn=5, beta=1, n_pca=None, de-
cay=None, adaptive_k=None, bandwidth=None, dis-
tance=’euclidean’, thresh=0.0001, n_jobs=1, **kwargs)

Bases: graphtools.base.DataGraph

Mutual nearest neighbors graph

Performs batch correction by forcing connections between batches, but only when the connection is mutual (i.e.
x is a neighbor of y _and_ y is a neighbor of x).

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.

• sample_idx (array-like, shape=[n_samples]) – Batch index

• beta (float, optional (default: 1)) – Downweight between-batch affinities by beta

• adaptive_k ({‘min’, ‘mean’, ‘sqrt’, None} (default: None)) – Weights MNN kernel
adaptively using the number of cells in each sample according to the selected method.

subgraphs
Graphs representing each batch separately

Type list of graphtools.graphs.kNNGraph

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

12 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

2.2. Graph Classes 13

graphtools Documentation, Release 1.5.2

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

14 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.graphs.MNNLandmarkGraph(data, sample_idx, knn=5, beta=1, n_pca=None,
decay=None, adaptive_k=None, band-
width=None, distance=’euclidean’,
thresh=0.0001, n_jobs=1, **kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph

K
Kernel matrix

2.2. Graph Classes 15

graphtools Documentation, Release 1.5.2

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

16 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

2.2. Graph Classes 17

graphtools Documentation, Release 1.5.2

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

18 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.MNNLandmarkPyGSPGraph(data, sample_idx, knn=5, beta=1,
n_pca=None, decay=None, adap-
tive_k=None, bandwidth=None, dis-
tance=’euclidean’, thresh=0.0001,
n_jobs=1, **kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph,
graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

2.2. Graph Classes 19

graphtools Documentation, Release 1.5.2

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

20 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

2.2. Graph Classes 21

graphtools Documentation, Release 1.5.2

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

22 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

2.2. Graph Classes 23

graphtools Documentation, Release 1.5.2

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

24 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

2.2. Graph Classes 25

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

26 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

2.2. Graph Classes 27

graphtools Documentation, Release 1.5.2

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

28 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

2.2. Graph Classes 29

graphtools Documentation, Release 1.5.2

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

30 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

2.2. Graph Classes 31

graphtools Documentation, Release 1.5.2

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.MNNPyGSPGraph(data, sample_idx, knn=5, beta=1, n_pca=None,
decay=None, adaptive_k=None, bandwidth=None,
distance=’euclidean’, thresh=0.0001, n_jobs=1,
**kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

32 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

compute_differential_operator()
Compute the graph differential operator (cached).

2.2. Graph Classes 33

graphtools Documentation, Release 1.5.2

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape

(continues on next page)

34 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

(continued from previous page)

(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

2.2. Graph Classes 35

graphtools Documentation, Release 1.5.2

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

36 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

2.2. Graph Classes 37

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

38 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

2.2. Graph Classes 39

graphtools Documentation, Release 1.5.2

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

40 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

2.2. Graph Classes 41

graphtools Documentation, Release 1.5.2

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

42 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

2.2. Graph Classes 43

graphtools Documentation, Release 1.5.2

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.TraditionalGraph(data, knn=5, decay=40, bandwidth=None,
bandwidth_scale=1.0, distance=’euclidean’,
n_pca=None, thresh=0.0001, precom-
puted=None, **kwargs)

Bases: graphtools.base.DataGraph

Traditional weighted adjacency graph

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame. If
precomputed is not None, data should be an [n_samples, n_samples] matrix denoting pair-
wise distances, affinities, or edge weights.

• knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to
build the graph

• decay (int or None, optional (default: 40)) – Rate of alpha decay to use. If None, alpha
decay is not used.

• bandwidth (float, list-like,‘callable‘, or None, optional (default: None)) – Fixed
bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like

44 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

(shape=[n_samples]) of bandwidths for each sample, or a callable that takes in a n x m
matrix and returns a a single value or list-like of length n (shape=[n_samples])

• bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

• distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance
can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has
even more choices

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None,False,0], uses the original data. If True then
estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. Note that the default kwarg is None for this
parameter. It is subsequently parsed to ‘auto’ if necessary. If ‘auto’, this threshold is smax
* np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value
of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B.
Flannery, “Numerical Recipes (3rd edition)”, Cambridge University Press, 2007, page 795.

• thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay
kernel. All affinities below thresh will be set to zero in order to save on time and memory
constraints.

• precomputed ({‘distance’, ‘affinity’, ‘adjacency’, None},) – optional (default: None) If
the graph is precomputed, this variable denotes which graph matrix is provided as data.
Only one of precomputed and n_pca can be set.

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

2.2. Graph Classes 45

graphtools Documentation, Release 1.5.2

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

46 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

2.2. Graph Classes 47

graphtools Documentation, Release 1.5.2

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

48 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

class graphtools.graphs.TraditionalLandmarkGraph(data, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0,
distance=’euclidean’, n_pca=None,
thresh=0.0001, precomputed=None,
**kwargs)

Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

2.2. Graph Classes 49

graphtools Documentation, Release 1.5.2

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

50 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

2.2. Graph Classes 51

graphtools Documentation, Release 1.5.2

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

52 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.TraditionalLandmarkPyGSPGraph(data, knn=5, decay=40,
bandwidth=None, band-
width_scale=1.0, dis-
tance=’euclidean’,
n_pca=None, thresh=0.0001,
precomputed=None,
**kwargs)

Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph,
graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

2.2. Graph Classes 53

graphtools Documentation, Release 1.5.2

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

54 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

2.2. Graph Classes 55

graphtools Documentation, Release 1.5.2

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

56 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

2.2. Graph Classes 57

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

58 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

2.2. Graph Classes 59

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

60 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random

2.2. Graph Classes 61

graphtools Documentation, Release 1.5.2

vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

62 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

2.2. Graph Classes 63

graphtools Documentation, Release 1.5.2

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

64 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.TraditionalPyGSPGraph(data, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0,
distance=’euclidean’, n_pca=None,
thresh=0.0001, precomputed=None,
**kwargs)

Bases: graphtools.graphs.TraditionalGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

2.2. Graph Classes 65

graphtools Documentation, Release 1.5.2

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

check_weights()
Check the characteristics of the weights matrix.

66 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

2.2. Graph Classes 67

graphtools Documentation, Release 1.5.2

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

68 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

2.2. Graph Classes 69

graphtools Documentation, Release 1.5.2

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

70 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

2.2. Graph Classes 71

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

72 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

2.2. Graph Classes 73

graphtools Documentation, Release 1.5.2

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

74 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

2.2. Graph Classes 75

graphtools Documentation, Release 1.5.2

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

76 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

2.2. Graph Classes 77

graphtools Documentation, Release 1.5.2

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.kNNGraph(data, knn=5, decay=None, knn_max=None,
search_multiplier=6, bandwidth=None, band-
width_scale=1.0, distance=’euclidean’, thresh=0.0001,
n_pca=None, **kwargs)

Bases: graphtools.base.DataGraph

K nearest neighbors graph

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.

• knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to
build the graph

• decay (int or None, optional (default: None)) – Rate of alpha decay to use. If None, alpha
decay is not used.

• bandwidth (float, list-like,‘callable‘, or None,) – optional (default: None) Fixed band-
width to use. If given, overrides knn. Can be a single bandwidth, or a list-like
(shape=[n_samples]) of bandwidths for each sample

• bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

• distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance
can be used distance metric for building kNN graph. Custom distance functions of form f(x,
y) = d are also accepted. TODO: actually sklearn.neighbors has even more choices

• thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay
kernel. All affinities below thresh will be set to zero in order to save on time and memory
constraints.

knn_tree
The fitted KNN tree. (cached) TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

Type sklearn.neighbors.NearestNeighbors

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

78 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

2.2. Graph Classes 79

graphtools Documentation, Release 1.5.2

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

80 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

2.2. Graph Classes 81

graphtools Documentation, Release 1.5.2

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.graphs.kNNLandmarkGraph(data, knn=5, decay=None, knn_max=None,
search_multiplier=6, bandwidth=None,
bandwidth_scale=1.0, distance=’euclidean’,
thresh=0.0001, n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

82 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

2.2. Graph Classes 83

graphtools Documentation, Release 1.5.2

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

84 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return type sklearn.neighbors.NearestNeighbors

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

2.2. Graph Classes 85

graphtools Documentation, Release 1.5.2

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.kNNLandmarkPyGSPGraph(data, knn=5, decay=None,
knn_max=None, search_multiplier=6,
bandwidth=None, bandwidth_scale=1.0,
distance=’euclidean’, thresh=0.0001,
n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph,
graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

86 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

2.2. Graph Classes 87

graphtools Documentation, Release 1.5.2

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

88 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

2.2. Graph Classes 89

graphtools Documentation, Release 1.5.2

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

90 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

2.2. Graph Classes 91

graphtools Documentation, Release 1.5.2

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

92 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

2.2. Graph Classes 93

graphtools Documentation, Release 1.5.2

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

94 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

2.2. Graph Classes 95

graphtools Documentation, Release 1.5.2

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

96 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

2.2. Graph Classes 97

graphtools Documentation, Release 1.5.2

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

98 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.kNNPyGSPGraph(data, knn=5, decay=None, knn_max=None,
search_multiplier=6, bandwidth=None, band-
width_scale=1.0, distance=’euclidean’,
thresh=0.0001, n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

2.2. Graph Classes 99

graphtools Documentation, Release 1.5.2

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

100 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

2.2. Graph Classes 101

graphtools Documentation, Release 1.5.2

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

102 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

2.2. Graph Classes 103

graphtools Documentation, Release 1.5.2

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()

(continues on next page)

104 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

(continued from previous page)

>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

2.2. Graph Classes 105

graphtools Documentation, Release 1.5.2

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

106 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

2.2. Graph Classes 107

graphtools Documentation, Release 1.5.2

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

108 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

2.2. Graph Classes 109

graphtools Documentation, Release 1.5.2

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

110 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

2.2. Graph Classes 111

graphtools Documentation, Release 1.5.2

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

2.3 Base Classes

class graphtools.base.Base
Bases: object

Class that deals with key-word arguments but is otherwise just an object.

set_params(**kwargs)

class graphtools.base.BaseGraph(kernel_symm=’+’, theta=None, anisotropy=0, gamma=None,
initialize=True, **kwargs)

Bases: graphtools.base.Base

Parent graph class

Parameters

• kernel_symm (string, optional (default: '+')) – Defines method of
kernel symmetrization. ‘+’ : additive ‘*’ : multiplicative ‘mnn’ : min-max MNN sym-
metrization ‘none’ : no symmetrization

• theta (float (default: 1)) – Min-max symmetrization constant. K = theta *
min(K, K.T) + (1 - theta) * max(K, K.T)

• anisotropy (float, optional (default: 0)) – Level of anisotropy between
0 and 1 (alpha in Coifman & Lafon, 2006)

• initialize (bool, optional (default : True)) – if false, don’t create the kernel matrix.

K
kernel matrix defined as the adjacency matrix with ones down the diagonal

Type array-like, shape=[n_samples, n_samples]

kernel

Type synonym for K

P
diffusion operator defined as a row-stochastic form of the kernel matrix

Type array-like, shape=[n_samples, n_samples] (cached)

diff_op

Type synonym for P

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

112 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

get_params()
Get parameters from this object

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: Invalid parameters: (these would require modifying the kernel matrix) - kernel_symm - theta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

2.3. Base Classes 113

graphtools Documentation, Release 1.5.2

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

weighted

class graphtools.base.Data(data, n_pca=None, rank_threshold=None, random_state=None,
**kwargs)

Bases: graphtools.base.Base

Parent class that handles the import and dimensionality reduction of data

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix. pandas.DataFrame, pandas.SparseDataFrame.

114 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None, False, 0], uses the original data. If ‘auto’ or
True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead
of PCA TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. If ‘auto’, this threshold is s_max * eps *
max(n_samples, n_features) where s_max is the maximum singular value of the data matrix
and eps is numerical precision. [press2007].

• random_state (int or None, optional (default: None)) – Random state for random PCA

data
Original data matrix

Type array-like, shape=[n_samples,n_features]

n_pca

Type int or None

data_nu
Reduced data matrix

Type array-like, shape=[n_samples,n_pca]

data_pca
sklearn PCA operator

Type sklearn.decomposition.PCA or sklearn.decomposition.TruncatedSVD

get_params()
Get parameters from this object

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: - n_pca - random_state

Parameters params (key-value pairs of parameter name and new
values) –

Returns

2.3. Base Classes 115

graphtools Documentation, Release 1.5.2

Return type self

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

class graphtools.base.DataGraph(data, verbose=True, n_jobs=1, **kwargs)
Bases: graphtools.base.Data, graphtools.base.BaseGraph

Abstract class for graphs built from a dataset

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix.

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None,False,0], uses the original data. If True then
estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. Note that the default kwarg is None for this
parameter. It is subsequently parsed to ‘auto’ if necessary. If ‘auto’, this threshold is smax
* np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value
of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B.
Flannery, “Numerical Recipes (3rd edition)”, Cambridge University Press, 2007, page 795.

• random_state (int or None, optional (default: None)) – Random state for random PCA
and graph building

• verbose (bool, optional (default: True)) – Verbosity.

• n_jobs (int, optional (default : 1)) – The number of jobs to use for the computation. If -1
all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful
for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2,
all CPUs but one are used

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

116 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

apply_anisotropy(K)

build_kernel()
Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y)
Build a kernel from new input data Y to the self.data

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises

• ValueError: if this Graph is not capable of extension or

• if the supplied data is the wrong shape

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

2.3. Base Classes 117

graphtools Documentation, Release 1.5.2

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: - n_jobs - verbose

Parameters params (key-value pairs of parameter name and new
values) –

Returns

118 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

2.3. Base Classes 119

graphtools Documentation, Release 1.5.2

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.base.PyGSPGraph(lap_type=’combinatorial’, coords=None, plotting=None,
**kwargs)

Bases: pygsp.graphs.graph.Graph, graphtools.base.Base

Interface between BaseGraph and PyGSP.

All graphs should possess these matrices. We inherit a lot of functionality from pygsp.graphs.Graph.

There is a lot of overhead involved in having both a weight and kernel matrix

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

120 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

2.3. Base Classes 121

graphtools Documentation, Release 1.5.2

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

122 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

2.3. Base Classes 123

graphtools Documentation, Release 1.5.2

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

124 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

2.3. Base Classes 125

graphtools Documentation, Release 1.5.2

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

126 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

2.3. Base Classes 127

graphtools Documentation, Release 1.5.2

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**kwargs)

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

translate(f, i)
Translate the signal f to the node i.

128 Chapter 2. Reference

graphtools Documentation, Release 1.5.2

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

2.4 Utilities

graphtools.utils.check_between(v_min, v_max, **params)
Checks parameters are in a specified range

Parameters

• v_min (float, minimum allowed value (inclusive)) –

• v_max (float, maximum allowed value (inclusive)) –

• params (object) – Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_greater(x, **params)
Check that parameters are greater than x as expected

Parameters x (excepted boundary) – Checks not run if parameters are greater than x

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_if_not(x, *checks, **params)
Run checks only if parameters are not equal to a specified value

Parameters

• x (excepted value) – Checks not run if parameters equal x

• checks (function) – Unnamed arguments, check functions to be run

• params (object) – Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_in(choices, **params)
Checks parameters are in a list of allowed parameters

Parameters

• choices (array-like, accepted values) –

• params (object) – Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_int(**params)
Check that parameters are integers as expected

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_positive(**params)
Check that parameters are positive as expected

Raises ValueError : unacceptable choice of parameters

2.4. Utilities 129

graphtools Documentation, Release 1.5.2

graphtools.utils.dense_nonzero_discrete(*args, **kwargs)

graphtools.utils.dense_set_diagonal(*args, **kwargs)

graphtools.utils.elementwise_maximum(*args, **kwargs)

graphtools.utils.elementwise_minimum(*args, **kwargs)

graphtools.utils.if_sparse(*args, **kwargs)

graphtools.utils.is_Anndata(X)

graphtools.utils.is_DataFrame(X)

graphtools.utils.is_SparseDataFrame(X)

graphtools.utils.matrix_is_equivalent(*args, **kwargs)

graphtools.utils.nonzero_discrete(*args, **kwargs)

graphtools.utils.set_diagonal(*args, **kwargs)

graphtools.utils.set_submatrix(*args, **kwargs)

graphtools.utils.sparse_maximum(*args, **kwargs)

graphtools.utils.sparse_minimum(*args, **kwargs)

graphtools.utils.sparse_nonzero_discrete(*args, **kwargs)

graphtools.utils.sparse_set_diagonal(*args, **kwargs)

graphtools.utils.to_array(*args, **kwargs)

130 Chapter 2. Reference

CHAPTER 3

Quick Start

To use graphtools, create a graphtools.Graph class:

from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'])
K = G.kernel
P = G.diff_op
G = graphtools.Graph(digits['data'], n_landmark=300)
L = G.landmark_op

To use graphtools with pygsp, create a graphtools.Graph class with use_pygsp=True:

from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'], use_pygsp=True)
N = G.N
W = G.W
basis = G.compute_fourier_basis()

131

graphtools Documentation, Release 1.5.2

132 Chapter 3. Quick Start

CHAPTER 4

Help

If you have any questions or require assistance using graphtools, please contact us at https://krishnaswamylab.org/
get-help

133

https://krishnaswamylab.org/get-help
https://krishnaswamylab.org/get-help

graphtools Documentation, Release 1.5.2

134 Chapter 4. Help

Bibliography

[press2007] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, “Numerical Recipes (3rd edition)”, Cambridge
University Press, 2007, page 795.

135

graphtools Documentation, Release 1.5.2

136 Bibliography

Python Module Index

g
graphtools.api, 5
graphtools.base, 112
graphtools.graphs, 7
graphtools.utils, 129

137

graphtools Documentation, Release 1.5.2

138 Python Module Index

Index

A
A (graphtools.base.PyGSPGraph attribute), 120
A (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 86
A (graphtools.graphs.kNNPyGSPGraph attribute), 99
A (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 19
A (graphtools.graphs.MNNPyGSPGraph attribute), 32
A (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 53
A (graphtools.graphs.TraditionalPyGSPGraph attribute),

65
apply_anisotropy() (graphtools.base.BaseGraph

method), 113
apply_anisotropy() (graphtools.base.DataGraph

method), 116
apply_anisotropy() (graph-

tools.graphs.kNNGraph method), 79
apply_anisotropy() (graph-

tools.graphs.kNNLandmarkGraph method),
82

apply_anisotropy() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 87

apply_anisotropy() (graph-
tools.graphs.kNNPyGSPGraph method),
100

apply_anisotropy() (graph-
tools.graphs.LandmarkGraph method), 8

apply_anisotropy() (graph-
tools.graphs.MNNGraph method), 12

apply_anisotropy() (graph-
tools.graphs.MNNLandmarkGraph method),
16

apply_anisotropy() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 20

apply_anisotropy() (graph-
tools.graphs.MNNPyGSPGraph method),

33
apply_anisotropy() (graph-

tools.graphs.TraditionalGraph method),
45

apply_anisotropy() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 49

apply_anisotropy() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 53

apply_anisotropy() (graph-
tools.graphs.TraditionalPyGSPGraph method),
66

B
Base (class in graphtools.base), 112
BaseGraph (class in graphtools.base), 112
build_kernel() (graphtools.base.BaseGraph

method), 113
build_kernel() (graphtools.base.DataGraph

method), 117
build_kernel() (graphtools.graphs.kNNGraph

method), 79
build_kernel() (graph-

tools.graphs.kNNLandmarkGraph method),
82

build_kernel() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 87

build_kernel() (graph-
tools.graphs.kNNPyGSPGraph method),
100

build_kernel() (graph-
tools.graphs.LandmarkGraph method), 8

build_kernel() (graphtools.graphs.MNNGraph
method), 12

build_kernel() (graph-
tools.graphs.MNNLandmarkGraph method),
16

139

graphtools Documentation, Release 1.5.2

build_kernel() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 20

build_kernel() (graph-
tools.graphs.MNNPyGSPGraph method),
33

build_kernel() (graph-
tools.graphs.TraditionalGraph method),
45

build_kernel() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 49

build_kernel() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 53

build_kernel() (graph-
tools.graphs.TraditionalPyGSPGraph method),
66

build_kernel_to_data() (graph-
tools.base.DataGraph method), 117

build_kernel_to_data() (graph-
tools.graphs.kNNGraph method), 79

build_kernel_to_data() (graph-
tools.graphs.kNNLandmarkGraph method),
82

build_kernel_to_data() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 87

build_kernel_to_data() (graph-
tools.graphs.kNNPyGSPGraph method),
100

build_kernel_to_data() (graph-
tools.graphs.LandmarkGraph method), 8

build_kernel_to_data() (graph-
tools.graphs.MNNGraph method), 12

build_kernel_to_data() (graph-
tools.graphs.MNNLandmarkGraph method),
16

build_kernel_to_data() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 20

build_kernel_to_data() (graph-
tools.graphs.MNNPyGSPGraph method),
33

build_kernel_to_data() (graph-
tools.graphs.TraditionalGraph method),
45

build_kernel_to_data() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 49

build_kernel_to_data() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 53

build_kernel_to_data() (graph-

tools.graphs.TraditionalPyGSPGraph method),
66

build_landmark_op() (graph-
tools.graphs.kNNLandmarkGraph method),
83

build_landmark_op() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 87

build_landmark_op() (graph-
tools.graphs.LandmarkGraph method), 8

build_landmark_op() (graph-
tools.graphs.MNNLandmarkGraph method),
16

build_landmark_op() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 20

build_landmark_op() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 49

build_landmark_op() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 54

C
check_between() (in module graphtools.utils), 129
check_greater() (in module graphtools.utils), 129
check_if_not() (in module graphtools.utils), 129
check_in() (in module graphtools.utils), 129
check_int() (in module graphtools.utils), 129
check_positive() (in module graphtools.utils), 129
check_weights() (graphtools.base.PyGSPGraph

method), 120
check_weights() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 87

check_weights() (graph-
tools.graphs.kNNPyGSPGraph method),
100

check_weights() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 20

check_weights() (graph-
tools.graphs.MNNPyGSPGraph method),
33

check_weights() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 54

check_weights() (graph-
tools.graphs.TraditionalPyGSPGraph method),
66

clusters (graphtools.graphs.kNNLandmarkGraph at-
tribute), 83

clusters (graphtools.graphs.kNNLandmarkPyGSPGraph
attribute), 88

140 Index

graphtools Documentation, Release 1.5.2

clusters (graphtools.graphs.LandmarkGraph at-
tribute), 8, 9

clusters (graphtools.graphs.MNNLandmarkGraph
attribute), 16

clusters (graphtools.graphs.MNNLandmarkPyGSPGraph
attribute), 21

clusters (graphtools.graphs.TraditionalLandmarkGraph
attribute), 49

clusters (graphtools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 54

compute_differential_operator() (graph-
tools.base.PyGSPGraph method), 120

compute_differential_operator() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 88

compute_differential_operator() (graph-
tools.graphs.kNNPyGSPGraph method), 101

compute_differential_operator() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 21

compute_differential_operator() (graph-
tools.graphs.MNNPyGSPGraph method),
33

compute_differential_operator() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 54

compute_differential_operator() (graph-
tools.graphs.TraditionalPyGSPGraph method),
67

compute_fourier_basis() (graph-
tools.base.PyGSPGraph method), 121

compute_fourier_basis() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 88

compute_fourier_basis() (graph-
tools.graphs.kNNPyGSPGraph method),
101

compute_fourier_basis() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 21

compute_fourier_basis() (graph-
tools.graphs.MNNPyGSPGraph method),
34

compute_fourier_basis() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 55

compute_fourier_basis() (graph-
tools.graphs.TraditionalPyGSPGraph method),
67

compute_laplacian() (graph-
tools.base.PyGSPGraph method), 122

compute_laplacian() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 89

compute_laplacian() (graph-
tools.graphs.kNNPyGSPGraph method),
102

compute_laplacian() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 22

compute_laplacian() (graph-
tools.graphs.MNNPyGSPGraph method),
35

compute_laplacian() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 55

compute_laplacian() (graph-
tools.graphs.TraditionalPyGSPGraph method),
68

D
D (graphtools.base.PyGSPGraph attribute), 120
d (graphtools.base.PyGSPGraph attribute), 122
D (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 86
d (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 90
D (graphtools.graphs.kNNPyGSPGraph attribute), 99
d (graphtools.graphs.kNNPyGSPGraph attribute), 102
D (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 20
d (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 23
D (graphtools.graphs.MNNPyGSPGraph attribute), 32
d (graphtools.graphs.MNNPyGSPGraph attribute), 35
D (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 53
d (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 56
D (graphtools.graphs.TraditionalPyGSPGraph attribute),

66
d (graphtools.graphs.TraditionalPyGSPGraph attribute),

69
Data (class in graphtools.base), 114
data (graphtools.base.Data attribute), 115
data_nu (graphtools.base.Data attribute), 115
data_pca (graphtools.base.Data attribute), 115
DataGraph (class in graphtools.base), 116
dense_nonzero_discrete() (in module graph-

tools.utils), 129
dense_set_diagonal() (in module graph-

tools.utils), 130
diff_aff (graphtools.base.BaseGraph attribute), 113
diff_aff (graphtools.base.DataGraph attribute), 117
diff_aff (graphtools.graphs.kNNGraph attribute), 79
diff_aff (graphtools.graphs.kNNLandmarkGraph at-

tribute), 83

Index 141

graphtools Documentation, Release 1.5.2

diff_aff (graphtools.graphs.kNNLandmarkPyGSPGraph
attribute), 90

diff_aff (graphtools.graphs.kNNPyGSPGraph
attribute), 103

diff_aff (graphtools.graphs.LandmarkGraph at-
tribute), 9

diff_aff (graphtools.graphs.MNNGraph attribute),
13

diff_aff (graphtools.graphs.MNNLandmarkGraph
attribute), 16

diff_aff (graphtools.graphs.MNNLandmarkPyGSPGraph
attribute), 23

diff_aff (graphtools.graphs.MNNPyGSPGraph at-
tribute), 35

diff_aff (graphtools.graphs.TraditionalGraph at-
tribute), 46

diff_aff (graphtools.graphs.TraditionalLandmarkGraph
attribute), 50

diff_aff (graphtools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 56

diff_aff (graphtools.graphs.TraditionalPyGSPGraph
attribute), 69

diff_op (graphtools.base.BaseGraph attribute), 112,
113

diff_op (graphtools.base.DataGraph attribute), 117
diff_op (graphtools.graphs.kNNGraph attribute), 79
diff_op (graphtools.graphs.kNNLandmarkGraph at-

tribute), 83
diff_op (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 90
diff_op (graphtools.graphs.kNNPyGSPGraph at-

tribute), 103
diff_op (graphtools.graphs.LandmarkGraph at-

tribute), 9
diff_op (graphtools.graphs.MNNGraph attribute), 13
diff_op (graphtools.graphs.MNNLandmarkGraph at-

tribute), 17
diff_op (graphtools.graphs.MNNLandmarkPyGSPGraph

attribute), 23
diff_op (graphtools.graphs.MNNPyGSPGraph at-

tribute), 36
diff_op (graphtools.graphs.TraditionalGraph at-

tribute), 46
diff_op (graphtools.graphs.TraditionalLandmarkGraph

attribute), 50
diff_op (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 56
diff_op (graphtools.graphs.TraditionalPyGSPGraph

attribute), 69
div() (graphtools.base.PyGSPGraph method), 122
div() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 90
div() (graphtools.graphs.kNNPyGSPGraph method),

103

div() (graphtools.graphs.MNNLandmarkPyGSPGraph
method), 23

div() (graphtools.graphs.MNNPyGSPGraph method),
36

div() (graphtools.graphs.TraditionalLandmarkPyGSPGraph
method), 56

div() (graphtools.graphs.TraditionalPyGSPGraph
method), 69

dw (graphtools.base.PyGSPGraph attribute), 123
dw (graphtools.graphs.kNNLandmarkPyGSPGraph at-

tribute), 91
dw (graphtools.graphs.kNNPyGSPGraph attribute), 103
dw (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 24
dw (graphtools.graphs.MNNPyGSPGraph attribute), 36
dw (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 57
dw (graphtools.graphs.TraditionalPyGSPGraph at-

tribute), 70

E
e (graphtools.base.PyGSPGraph attribute), 123
e (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 91
e (graphtools.graphs.kNNPyGSPGraph attribute), 103
e (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 24
e (graphtools.graphs.MNNPyGSPGraph attribute), 36
e (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 57
e (graphtools.graphs.TraditionalPyGSPGraph attribute),

70
elementwise_maximum() (in module graph-

tools.utils), 130
elementwise_minimum() (in module graph-

tools.utils), 130
estimate_lmax() (graphtools.base.PyGSPGraph

method), 123
estimate_lmax() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 91

estimate_lmax() (graph-
tools.graphs.kNNPyGSPGraph method),
103

estimate_lmax() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 24

estimate_lmax() (graph-
tools.graphs.MNNPyGSPGraph method),
36

estimate_lmax() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 57

142 Index

graphtools Documentation, Release 1.5.2

estimate_lmax() (graph-
tools.graphs.TraditionalPyGSPGraph method),
70

extend_to_data() (graphtools.base.DataGraph
method), 117

extend_to_data() (graphtools.graphs.kNNGraph
method), 79

extend_to_data() (graph-
tools.graphs.kNNLandmarkGraph method),
83

extend_to_data() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 91

extend_to_data() (graph-
tools.graphs.kNNPyGSPGraph method),
104

extend_to_data() (graph-
tools.graphs.LandmarkGraph method), 9

extend_to_data() (graphtools.graphs.MNNGraph
method), 13

extend_to_data() (graph-
tools.graphs.MNNLandmarkGraph method),
17

extend_to_data() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 24

extend_to_data() (graph-
tools.graphs.MNNPyGSPGraph method),
37

extend_to_data() (graph-
tools.graphs.TraditionalGraph method),
46

extend_to_data() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 50

extend_to_data() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 58

extend_to_data() (graph-
tools.graphs.TraditionalPyGSPGraph method),
70

extract_components() (graph-
tools.base.PyGSPGraph method), 123

extract_components() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 92

extract_components() (graph-
tools.graphs.kNNPyGSPGraph method),
104

extract_components() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 25

extract_components() (graph-
tools.graphs.MNNPyGSPGraph method),

37
extract_components() (graph-

tools.graphs.TraditionalLandmarkPyGSPGraph
method), 58

extract_components() (graph-
tools.graphs.TraditionalPyGSPGraph method),
71

F
from_igraph() (in module graphtools.api), 7

G
get_edge_list() (graphtools.base.PyGSPGraph

method), 124
get_edge_list() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 92

get_edge_list() (graph-
tools.graphs.kNNPyGSPGraph method),
105

get_edge_list() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 25

get_edge_list() (graph-
tools.graphs.MNNPyGSPGraph method),
37

get_edge_list() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 58

get_edge_list() (graph-
tools.graphs.TraditionalPyGSPGraph method),
71

get_params() (graphtools.base.BaseGraph method),
113

get_params() (graphtools.base.Data method), 115
get_params() (graphtools.base.DataGraph method),

117
get_params() (graphtools.graphs.kNNGraph

method), 80
get_params() (graph-

tools.graphs.kNNLandmarkGraph method),
84

get_params() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 92

get_params() (graphtools.graphs.kNNPyGSPGraph
method), 105

get_params() (graphtools.graphs.LandmarkGraph
method), 9

get_params() (graphtools.graphs.MNNGraph
method), 13

get_params() (graph-
tools.graphs.MNNLandmarkGraph method),
17

Index 143

graphtools Documentation, Release 1.5.2

get_params() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 25

get_params() (graphtools.graphs.MNNPyGSPGraph
method), 38

get_params() (graphtools.graphs.TraditionalGraph
method), 46

get_params() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 50

get_params() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 59

get_params() (graph-
tools.graphs.TraditionalPyGSPGraph method),
71

gft() (graphtools.base.PyGSPGraph method), 124
gft() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 92
gft() (graphtools.graphs.kNNPyGSPGraph method),

105
gft() (graphtools.graphs.MNNLandmarkPyGSPGraph

method), 25
gft() (graphtools.graphs.MNNPyGSPGraph method),

38
gft() (graphtools.graphs.TraditionalLandmarkPyGSPGraph

method), 59
gft() (graphtools.graphs.TraditionalPyGSPGraph

method), 71
gft_windowed() (graphtools.base.PyGSPGraph

method), 125
gft_windowed() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 93

gft_windowed() (graph-
tools.graphs.kNNPyGSPGraph method),
105

gft_windowed() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 26

gft_windowed() (graph-
tools.graphs.MNNPyGSPGraph method),
38

gft_windowed() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 59

gft_windowed() (graph-
tools.graphs.TraditionalPyGSPGraph method),
72

gft_windowed_gabor() (graph-
tools.base.PyGSPGraph method), 125

gft_windowed_gabor() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 93

gft_windowed_gabor() (graph-
tools.graphs.kNNPyGSPGraph method),
106

gft_windowed_gabor() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 26

gft_windowed_gabor() (graph-
tools.graphs.MNNPyGSPGraph method),
38

gft_windowed_gabor() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 59

gft_windowed_gabor() (graph-
tools.graphs.TraditionalPyGSPGraph method),
72

gft_windowed_normalized() (graph-
tools.base.PyGSPGraph method), 125

gft_windowed_normalized() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 93

gft_windowed_normalized() (graph-
tools.graphs.kNNPyGSPGraph method),
106

gft_windowed_normalized() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 26

gft_windowed_normalized() (graph-
tools.graphs.MNNPyGSPGraph method),
39

gft_windowed_normalized() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 60

gft_windowed_normalized() (graph-
tools.graphs.TraditionalPyGSPGraph method),
72

grad() (graphtools.base.PyGSPGraph method), 125
grad() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 93
grad() (graphtools.graphs.kNNPyGSPGraph method),

106
grad() (graphtools.graphs.MNNLandmarkPyGSPGraph

method), 26
grad() (graphtools.graphs.MNNPyGSPGraph

method), 39
grad() (graphtools.graphs.TraditionalLandmarkPyGSPGraph

method), 60
grad() (graphtools.graphs.TraditionalPyGSPGraph

method), 72
Graph() (in module graphtools.api), 5
graphtools.api (module), 5
graphtools.base (module), 112
graphtools.graphs (module), 7
graphtools.utils (module), 129

144 Index

graphtools Documentation, Release 1.5.2

I
if_sparse() (in module graphtools.utils), 130
igft() (graphtools.base.PyGSPGraph method), 126
igft() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 94
igft() (graphtools.graphs.kNNPyGSPGraph method),

107
igft() (graphtools.graphs.MNNLandmarkPyGSPGraph

method), 27
igft() (graphtools.graphs.MNNPyGSPGraph

method), 39
igft() (graphtools.graphs.TraditionalLandmarkPyGSPGraph

method), 60
igft() (graphtools.graphs.TraditionalPyGSPGraph

method), 73
interpolate() (graphtools.base.DataGraph

method), 117
interpolate() (graphtools.graphs.kNNGraph

method), 80
interpolate() (graph-

tools.graphs.kNNLandmarkGraph method),
84

interpolate() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 94

interpolate() (graph-
tools.graphs.kNNPyGSPGraph method),
107

interpolate() (graphtools.graphs.LandmarkGraph
method), 9

interpolate() (graphtools.graphs.MNNGraph
method), 13

interpolate() (graph-
tools.graphs.MNNLandmarkGraph method),
17

interpolate() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 27

interpolate() (graph-
tools.graphs.MNNPyGSPGraph method),
40

interpolate() (graph-
tools.graphs.TraditionalGraph method),
46

interpolate() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 50

interpolate() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 61

interpolate() (graph-
tools.graphs.TraditionalPyGSPGraph method),
73

inverse_transform() (graphtools.base.Data

method), 115
inverse_transform() (graph-

tools.base.DataGraph method), 118
inverse_transform() (graph-

tools.graphs.kNNGraph method), 80
inverse_transform() (graph-

tools.graphs.kNNLandmarkGraph method),
84

inverse_transform() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 95

inverse_transform() (graph-
tools.graphs.kNNPyGSPGraph method),
107

inverse_transform() (graph-
tools.graphs.LandmarkGraph method), 10

inverse_transform() (graph-
tools.graphs.MNNGraph method), 14

inverse_transform() (graph-
tools.graphs.MNNLandmarkGraph method),
17

inverse_transform() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 28

inverse_transform() (graph-
tools.graphs.MNNPyGSPGraph method),
40

inverse_transform() (graph-
tools.graphs.TraditionalGraph method),
47

inverse_transform() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 50

inverse_transform() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 61

inverse_transform() (graph-
tools.graphs.TraditionalPyGSPGraph method),
74

is_Anndata() (in module graphtools.utils), 130
is_connected() (graphtools.base.PyGSPGraph

method), 126
is_connected() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 95

is_connected() (graph-
tools.graphs.kNNPyGSPGraph method),
108

is_connected() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 28

is_connected() (graph-
tools.graphs.MNNPyGSPGraph method),
40

Index 145

graphtools Documentation, Release 1.5.2

is_connected() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 61

is_connected() (graph-
tools.graphs.TraditionalPyGSPGraph method),
74

is_DataFrame() (in module graphtools.utils), 130
is_directed() (graphtools.base.PyGSPGraph

method), 127
is_directed() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 95

is_directed() (graph-
tools.graphs.kNNPyGSPGraph method),
108

is_directed() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 28

is_directed() (graph-
tools.graphs.MNNPyGSPGraph method),
41

is_directed() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 62

is_directed() (graph-
tools.graphs.TraditionalPyGSPGraph method),
74

is_SparseDataFrame() (in module graph-
tools.utils), 130

K
K (graphtools.base.BaseGraph attribute), 112
K (graphtools.base.DataGraph attribute), 116
K (graphtools.base.PyGSPGraph attribute), 120
K (graphtools.graphs.kNNGraph attribute), 78
K (graphtools.graphs.kNNLandmarkGraph attribute), 82
K (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 86
K (graphtools.graphs.kNNPyGSPGraph attribute), 99
K (graphtools.graphs.LandmarkGraph attribute), 8
K (graphtools.graphs.MNNGraph attribute), 12
K (graphtools.graphs.MNNLandmarkGraph attribute), 15
K (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 20
K (graphtools.graphs.MNNPyGSPGraph attribute), 32
K (graphtools.graphs.TraditionalGraph attribute), 45
K (graphtools.graphs.TraditionalLandmarkGraph at-

tribute), 49
K (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 53
K (graphtools.graphs.TraditionalPyGSPGraph attribute),

66
kernel (graphtools.base.BaseGraph attribute), 112,

113

kernel (graphtools.base.DataGraph attribute), 118
kernel (graphtools.graphs.kNNGraph attribute), 80
kernel (graphtools.graphs.kNNLandmarkGraph

attribute), 84
kernel (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 96
kernel (graphtools.graphs.kNNPyGSPGraph at-

tribute), 109
kernel (graphtools.graphs.LandmarkGraph attribute),

10
kernel (graphtools.graphs.MNNGraph attribute), 14
kernel (graphtools.graphs.MNNLandmarkGraph at-

tribute), 18
kernel (graphtools.graphs.MNNLandmarkPyGSPGraph

attribute), 29
kernel (graphtools.graphs.MNNPyGSPGraph at-

tribute), 41
kernel (graphtools.graphs.TraditionalGraph attribute),

47
kernel (graphtools.graphs.TraditionalLandmarkGraph

attribute), 51
kernel (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 62
kernel (graphtools.graphs.TraditionalPyGSPGraph at-

tribute), 75
kernel_degree (graphtools.base.BaseGraph at-

tribute), 113
kernel_degree (graphtools.base.DataGraph at-

tribute), 118
kernel_degree (graphtools.graphs.kNNGraph at-

tribute), 80
kernel_degree (graph-

tools.graphs.kNNLandmarkGraph attribute),
84

kernel_degree (graph-
tools.graphs.kNNLandmarkPyGSPGraph
attribute), 96

kernel_degree (graph-
tools.graphs.kNNPyGSPGraph attribute),
109

kernel_degree (graphtools.graphs.LandmarkGraph
attribute), 10

kernel_degree (graphtools.graphs.MNNGraph at-
tribute), 14

kernel_degree (graph-
tools.graphs.MNNLandmarkGraph attribute),
18

kernel_degree (graph-
tools.graphs.MNNLandmarkPyGSPGraph
attribute), 29

kernel_degree (graph-
tools.graphs.MNNPyGSPGraph attribute),
41

kernel_degree (graph-

146 Index

graphtools Documentation, Release 1.5.2

tools.graphs.TraditionalGraph attribute),
47

kernel_degree (graph-
tools.graphs.TraditionalLandmarkGraph
attribute), 51

kernel_degree (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 62

kernel_degree (graph-
tools.graphs.TraditionalPyGSPGraph at-
tribute), 75

knn_tree (graphtools.graphs.kNNGraph attribute), 78,
80

knn_tree (graphtools.graphs.kNNLandmarkGraph at-
tribute), 84

knn_tree (graphtools.graphs.kNNLandmarkPyGSPGraph
attribute), 96

knn_tree (graphtools.graphs.kNNPyGSPGraph
attribute), 109

kNNGraph (class in graphtools.graphs), 78
kNNLandmarkGraph (class in graphtools.graphs), 82
kNNLandmarkPyGSPGraph (class in graph-

tools.graphs), 86
kNNPyGSPGraph (class in graphtools.graphs), 99

L
landmark_op (graph-

tools.graphs.kNNLandmarkGraph attribute),
85

landmark_op (graph-
tools.graphs.kNNLandmarkPyGSPGraph
attribute), 96

landmark_op (graphtools.graphs.LandmarkGraph at-
tribute), 7, 10

landmark_op (graph-
tools.graphs.MNNLandmarkGraph attribute),
18

landmark_op (graph-
tools.graphs.MNNLandmarkPyGSPGraph
attribute), 29

landmark_op (graph-
tools.graphs.TraditionalLandmarkGraph
attribute), 51

landmark_op (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 62

LandmarkGraph (class in graphtools.graphs), 7
lmax (graphtools.base.PyGSPGraph attribute), 127
lmax (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 96
lmax (graphtools.graphs.kNNPyGSPGraph attribute),

109
lmax (graphtools.graphs.MNNLandmarkPyGSPGraph

attribute), 29

lmax (graphtools.graphs.MNNPyGSPGraph attribute),
41

lmax (graphtools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 62

lmax (graphtools.graphs.TraditionalPyGSPGraph at-
tribute), 75

M
matrix_is_equivalent() (in module graph-

tools.utils), 130
MNNGraph (class in graphtools.graphs), 12
MNNLandmarkGraph (class in graphtools.graphs), 15
MNNLandmarkPyGSPGraph (class in graph-

tools.graphs), 19
MNNPyGSPGraph (class in graphtools.graphs), 32
modulate() (graphtools.base.PyGSPGraph method),

127
modulate() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 96
modulate() (graphtools.graphs.kNNPyGSPGraph

method), 109
modulate() (graphtools.graphs.MNNLandmarkPyGSPGraph

method), 29
modulate() (graphtools.graphs.MNNPyGSPGraph

method), 41
modulate() (graphtools.graphs.TraditionalLandmarkPyGSPGraph

method), 63
modulate() (graphtools.graphs.TraditionalPyGSPGraph

method), 75
mu (graphtools.base.PyGSPGraph attribute), 128
mu (graphtools.graphs.kNNLandmarkPyGSPGraph at-

tribute), 97
mu (graphtools.graphs.kNNPyGSPGraph attribute), 109
mu (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 29
mu (graphtools.graphs.MNNPyGSPGraph attribute), 42
mu (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 63
mu (graphtools.graphs.TraditionalPyGSPGraph at-

tribute), 75

N
n_pca (graphtools.base.Data attribute), 115
nonzero_discrete() (in module graphtools.utils),

130

P
P (graphtools.base.BaseGraph attribute), 112
P (graphtools.base.DataGraph attribute), 116
P (graphtools.graphs.kNNGraph attribute), 78
P (graphtools.graphs.kNNLandmarkGraph attribute), 82
P (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 86
P (graphtools.graphs.kNNPyGSPGraph attribute), 99

Index 147

graphtools Documentation, Release 1.5.2

P (graphtools.graphs.LandmarkGraph attribute), 8
P (graphtools.graphs.MNNGraph attribute), 12
P (graphtools.graphs.MNNLandmarkGraph attribute), 16
P (graphtools.graphs.MNNLandmarkPyGSPGraph at-

tribute), 20
P (graphtools.graphs.MNNPyGSPGraph attribute), 32
P (graphtools.graphs.TraditionalGraph attribute), 45
P (graphtools.graphs.TraditionalLandmarkGraph at-

tribute), 49
P (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 53
P (graphtools.graphs.TraditionalPyGSPGraph attribute),

66
plot() (graphtools.base.PyGSPGraph method), 128
plot() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 97
plot() (graphtools.graphs.kNNPyGSPGraph method),

109
plot() (graphtools.graphs.MNNLandmarkPyGSPGraph

method), 29
plot() (graphtools.graphs.MNNPyGSPGraph

method), 42
plot() (graphtools.graphs.TraditionalLandmarkPyGSPGraph

method), 63
plot() (graphtools.graphs.TraditionalPyGSPGraph

method), 75
plot_signal() (graphtools.base.PyGSPGraph

method), 128
plot_signal() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 97

plot_signal() (graph-
tools.graphs.kNNPyGSPGraph method),
109

plot_signal() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 30

plot_signal() (graph-
tools.graphs.MNNPyGSPGraph method),
42

plot_signal() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 63

plot_signal() (graph-
tools.graphs.TraditionalPyGSPGraph method),
75

plot_spectrogram() (graph-
tools.base.PyGSPGraph method), 128

plot_spectrogram() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 97

plot_spectrogram() (graph-
tools.graphs.kNNPyGSPGraph method),
109

plot_spectrogram() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 30

plot_spectrogram() (graph-
tools.graphs.MNNPyGSPGraph method),
42

plot_spectrogram() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 63

plot_spectrogram() (graph-
tools.graphs.TraditionalPyGSPGraph method),
76

PyGSPGraph (class in graphtools.base), 120

R
read_pickle() (in module graphtools.api), 7

S
set_coordinates() (graphtools.base.PyGSPGraph

method), 128
set_coordinates() (graph-

tools.graphs.kNNLandmarkPyGSPGraph
method), 97

set_coordinates() (graph-
tools.graphs.kNNPyGSPGraph method),
110

set_coordinates() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 30

set_coordinates() (graph-
tools.graphs.MNNPyGSPGraph method),
42

set_coordinates() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 63

set_coordinates() (graph-
tools.graphs.TraditionalPyGSPGraph method),
76

set_diagonal() (in module graphtools.utils), 130
set_params() (graphtools.base.Base method), 112
set_params() (graphtools.base.BaseGraph method),

113
set_params() (graphtools.base.Data method), 115
set_params() (graphtools.base.DataGraph method),

118
set_params() (graphtools.base.PyGSPGraph

method), 128
set_params() (graphtools.graphs.kNNGraph

method), 81
set_params() (graph-

tools.graphs.kNNLandmarkGraph method),
85

set_params() (graph-
tools.graphs.kNNLandmarkPyGSPGraph

148 Index

graphtools Documentation, Release 1.5.2

method), 97
set_params() (graphtools.graphs.kNNPyGSPGraph

method), 110
set_params() (graphtools.graphs.LandmarkGraph

method), 10
set_params() (graphtools.graphs.MNNGraph

method), 14
set_params() (graph-

tools.graphs.MNNLandmarkGraph method),
18

set_params() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 30

set_params() (graphtools.graphs.MNNPyGSPGraph
method), 42

set_params() (graphtools.graphs.TraditionalGraph
method), 47

set_params() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 51

set_params() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 63

set_params() (graph-
tools.graphs.TraditionalPyGSPGraph method),
76

set_submatrix() (in module graphtools.utils), 130
shortest_path() (graphtools.base.BaseGraph

method), 113
shortest_path() (graphtools.base.DataGraph

method), 119
shortest_path() (graphtools.graphs.kNNGraph

method), 81
shortest_path() (graph-

tools.graphs.kNNLandmarkGraph method),
85

shortest_path() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 97

shortest_path() (graph-
tools.graphs.kNNPyGSPGraph method),
110

shortest_path() (graph-
tools.graphs.LandmarkGraph method), 10

shortest_path() (graphtools.graphs.MNNGraph
method), 14

shortest_path() (graph-
tools.graphs.MNNLandmarkGraph method),
18

shortest_path() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 30

shortest_path() (graph-
tools.graphs.MNNPyGSPGraph method),

43
shortest_path() (graph-

tools.graphs.TraditionalGraph method),
47

shortest_path() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 51

shortest_path() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 64

shortest_path() (graph-
tools.graphs.TraditionalPyGSPGraph method),
76

sparse_maximum() (in module graphtools.utils), 130
sparse_minimum() (in module graphtools.utils), 130
sparse_nonzero_discrete() (in module graph-

tools.utils), 130
sparse_set_diagonal() (in module graph-

tools.utils), 130
subgraph() (graphtools.base.PyGSPGraph method),

128
subgraph() (graphtools.graphs.kNNLandmarkPyGSPGraph

method), 98
subgraph() (graphtools.graphs.kNNPyGSPGraph

method), 110
subgraph() (graphtools.graphs.MNNLandmarkPyGSPGraph

method), 31
subgraph() (graphtools.graphs.MNNPyGSPGraph

method), 43
subgraph() (graphtools.graphs.TraditionalLandmarkPyGSPGraph

method), 64
subgraph() (graphtools.graphs.TraditionalPyGSPGraph

method), 77
subgraphs (graphtools.graphs.MNNGraph attribute),

12
symmetrize_kernel() (graph-

tools.base.BaseGraph method), 114
symmetrize_kernel() (graph-

tools.base.DataGraph method), 119
symmetrize_kernel() (graph-

tools.graphs.kNNGraph method), 81
symmetrize_kernel() (graph-

tools.graphs.kNNLandmarkGraph method),
85

symmetrize_kernel() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 98

symmetrize_kernel() (graph-
tools.graphs.kNNPyGSPGraph method),
111

symmetrize_kernel() (graph-
tools.graphs.LandmarkGraph method), 11

symmetrize_kernel() (graph-
tools.graphs.MNNGraph method), 15

Index 149

graphtools Documentation, Release 1.5.2

symmetrize_kernel() (graph-
tools.graphs.MNNLandmarkGraph method),
18

symmetrize_kernel() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 31

symmetrize_kernel() (graph-
tools.graphs.MNNPyGSPGraph method),
43

symmetrize_kernel() (graph-
tools.graphs.TraditionalGraph method),
48

symmetrize_kernel() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 52

symmetrize_kernel() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 64

symmetrize_kernel() (graph-
tools.graphs.TraditionalPyGSPGraph method),
77

T
to_array() (in module graphtools.utils), 130
to_igraph() (graphtools.base.BaseGraph method),

114
to_igraph() (graphtools.base.DataGraph method),

119
to_igraph() (graphtools.graphs.kNNGraph method),

81
to_igraph() (graph-

tools.graphs.kNNLandmarkGraph method),
85

to_igraph() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 98

to_igraph() (graphtools.graphs.kNNPyGSPGraph
method), 111

to_igraph() (graphtools.graphs.LandmarkGraph
method), 11

to_igraph() (graphtools.graphs.MNNGraph
method), 15

to_igraph() (graph-
tools.graphs.MNNLandmarkGraph method),
18

to_igraph() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 31

to_igraph() (graphtools.graphs.MNNPyGSPGraph
method), 43

to_igraph() (graphtools.graphs.TraditionalGraph
method), 48

to_igraph() (graph-
tools.graphs.TraditionalLandmarkGraph

method), 52
to_igraph() (graph-

tools.graphs.TraditionalLandmarkPyGSPGraph
method), 64

to_igraph() (graph-
tools.graphs.TraditionalPyGSPGraph method),
77

to_pickle() (graphtools.base.BaseGraph method),
114

to_pickle() (graphtools.base.DataGraph method),
119

to_pickle() (graphtools.graphs.kNNGraph method),
81

to_pickle() (graph-
tools.graphs.kNNLandmarkGraph method),
85

to_pickle() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 98

to_pickle() (graphtools.graphs.kNNPyGSPGraph
method), 111

to_pickle() (graphtools.graphs.LandmarkGraph
method), 11

to_pickle() (graphtools.graphs.MNNGraph
method), 15

to_pickle() (graph-
tools.graphs.MNNLandmarkGraph method),
19

to_pickle() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 31

to_pickle() (graphtools.graphs.MNNPyGSPGraph
method), 43

to_pickle() (graphtools.graphs.TraditionalGraph
method), 48

to_pickle() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 52

to_pickle() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 65

to_pickle() (graph-
tools.graphs.TraditionalPyGSPGraph method),
77

to_pygsp() (graphtools.base.BaseGraph method),
114

to_pygsp() (graphtools.base.DataGraph method),
119

to_pygsp() (graphtools.graphs.kNNGraph method),
81

to_pygsp() (graphtools.graphs.kNNLandmarkGraph
method), 86

to_pygsp() (graphtools.graphs.kNNLandmarkPyGSPGraph
method), 98

150 Index

graphtools Documentation, Release 1.5.2

to_pygsp() (graphtools.graphs.kNNPyGSPGraph
method), 111

to_pygsp() (graphtools.graphs.LandmarkGraph
method), 11

to_pygsp() (graphtools.graphs.MNNGraph method),
15

to_pygsp() (graphtools.graphs.MNNLandmarkGraph
method), 19

to_pygsp() (graphtools.graphs.MNNLandmarkPyGSPGraph
method), 31

to_pygsp() (graphtools.graphs.MNNPyGSPGraph
method), 43

to_pygsp() (graphtools.graphs.TraditionalGraph
method), 48

to_pygsp() (graphtools.graphs.TraditionalLandmarkGraph
method), 52

to_pygsp() (graphtools.graphs.TraditionalLandmarkPyGSPGraph
method), 65

to_pygsp() (graphtools.graphs.TraditionalPyGSPGraph
method), 77

TraditionalGraph (class in graphtools.graphs), 44
TraditionalLandmarkGraph (class in graph-

tools.graphs), 48
TraditionalLandmarkPyGSPGraph (class in

graphtools.graphs), 53
TraditionalPyGSPGraph (class in graph-

tools.graphs), 65
transform() (graphtools.base.Data method), 116
transform() (graphtools.base.DataGraph method),

119
transform() (graphtools.graphs.kNNGraph method),

82
transform() (graph-

tools.graphs.kNNLandmarkGraph method),
86

transform() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 99

transform() (graphtools.graphs.kNNPyGSPGraph
method), 111

transform() (graphtools.graphs.LandmarkGraph
method), 11

transform() (graphtools.graphs.MNNGraph
method), 15

transform() (graph-
tools.graphs.MNNLandmarkGraph method),
19

transform() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 31

transform() (graphtools.graphs.MNNPyGSPGraph
method), 44

transform() (graphtools.graphs.TraditionalGraph
method), 48

transform() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 52

transform() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 65

transform() (graph-
tools.graphs.TraditionalPyGSPGraph method),
77

transitions (graph-
tools.graphs.kNNLandmarkGraph attribute),
86

transitions (graph-
tools.graphs.kNNLandmarkPyGSPGraph
attribute), 99

transitions (graphtools.graphs.LandmarkGraph at-
tribute), 7, 11

transitions (graph-
tools.graphs.MNNLandmarkGraph attribute),
19

transitions (graph-
tools.graphs.MNNLandmarkPyGSPGraph
attribute), 32

transitions (graph-
tools.graphs.TraditionalLandmarkGraph
attribute), 52

transitions (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 65

translate() (graphtools.base.PyGSPGraph
method), 128

translate() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 99

translate() (graphtools.graphs.kNNPyGSPGraph
method), 111

translate() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 32

translate() (graphtools.graphs.MNNPyGSPGraph
method), 44

translate() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 65

translate() (graph-
tools.graphs.TraditionalPyGSPGraph method),
78

U
U (graphtools.base.PyGSPGraph attribute), 120
U (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 87
U (graphtools.graphs.kNNPyGSPGraph attribute), 100

Index 151

graphtools Documentation, Release 1.5.2

U (graphtools.graphs.MNNLandmarkPyGSPGraph at-
tribute), 20

U (graphtools.graphs.MNNPyGSPGraph attribute), 32
U (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 53
U (graphtools.graphs.TraditionalPyGSPGraph attribute),

66

W
weighted (graphtools.base.BaseGraph attribute), 114
weighted (graphtools.base.DataGraph attribute), 120
weighted (graphtools.graphs.kNNGraph attribute), 82
weighted (graphtools.graphs.kNNLandmarkGraph at-

tribute), 86
weighted (graphtools.graphs.kNNLandmarkPyGSPGraph

attribute), 99
weighted (graphtools.graphs.kNNPyGSPGraph

attribute), 112
weighted (graphtools.graphs.LandmarkGraph at-

tribute), 12
weighted (graphtools.graphs.MNNGraph attribute),

15
weighted (graphtools.graphs.MNNLandmarkGraph

attribute), 19
weighted (graphtools.graphs.MNNLandmarkPyGSPGraph

attribute), 32
weighted (graphtools.graphs.MNNPyGSPGraph at-

tribute), 44
weighted (graphtools.graphs.TraditionalGraph at-

tribute), 48
weighted (graphtools.graphs.TraditionalLandmarkGraph

attribute), 53
weighted (graphtools.graphs.TraditionalLandmarkPyGSPGraph

attribute), 65
weighted (graphtools.graphs.TraditionalPyGSPGraph

attribute), 78

152 Index

	Installation
	Installation with pip
	Installation from source

	Reference
	API
	Graph Classes
	Base Classes
	Utilities

	Quick Start
	Help
	Bibliography
	Python Module Index
	Index

