graphtools Documentation

Release 1.5.2

Scott Gigante and Jay Stanley, Yale University

Aug 10, 2020

Contents

1	1 Installation		3
	1.1 Installation with <i>pip</i>		3
	1.2 Installation from source		3
2	2 Reference		5
	2.1 API		5
	2.2 Graph Classes		7
	2.3 Base Classes		2
	2.4 Utilities		29
3	3 Quick Start	13	81
4	4 Help	13	33
Bi	Bibliography		
Py	Python Module Index		
In	Index	13	9

Tools for building and manipulating graphs in Python.

CHAPTER 1

Installation

1.1 Installation with pip

Install graphtools using:

```
pip install --user graphtools
```

1.2 Installation from source

Install from source using:

```
git clone git://github.com/KrishnaswamyLab/graphtools.git
cd graphtools
python setup.py install --user
```

CHAPTER 2

Reference

2.1 API

graphtools.api.Graph(data, n_pca=None, rank_threshold=None, knn=5, decay=40, bandknn_max=None, width=None, *bandwidth_scale=1.0*, anisotropy=0,thresh=0.0001, distance='euclidean', kernel_symm='+', theta=None, precomputed=None, beta=1, sample idx=None, adaptive k=None, *n_landmark=None*, $n_{svd=100}$, $n_{jobs=-1}$, verbose=False, random_state=None, graphtype='auto', use_pygsp=False, initialize=True, **kwargs)

Create a graph built on data.

Automatically selects the appropriate DataGraph subclass based on chosen parameters. Selection criteria: - if *graphtype* is given, this will be respected - otherwise: - if *sample_idx* is given, an MNNGraph will be created - if *precomputed* is not given, and either *decay* is *None* or *thresh* is given, a kNNGraph will be created - otherwise, a TraditionalGraph will be created.

Incompatibilities: - MNNGraph and kNNGraph cannot be precomputed - kNNGraph and TraditionalGraph do not accept sample indices

Parameters

- **data** (array-like, shape=[n_samples, n_features]) accepted types: numpy.ndarray, scipy.sparse.spmatrix. TODO: accept pandas dataframes'
- n_pca ({*int*, *None*, *bool*, 'auto'}, optional (default: *None*)) number of PC dimensions to retain for graph building. If n_pca in [*None*, *False*, 0], uses the original data. If 'auto' or *True* then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- **rank_threshold** (*float*, 'auto', optional (default: 'auto')) threshold to use when estimating rank for *n_pca in [True, 'auto']*. If 'auto', this threshold is s_max * eps * max(n_samples, n_features) where s_max is the maximum singular value of the data matrix and eps is numerical precision. [press2007].

- **knn** (*int*, optional (default: 5)) Number of nearest neighbors (including self) to use to build the graph
- **decay** (*int* or *None*, optional (default: 40)) Rate of alpha decay to use. If *None*, alpha decay is not used and a vanilla k-Nearest Neighbors graph is returned.
- **bandwidth** (*float*, list-like, 'callable', or *None*, optional (default: *None*)) Fixed bandwidth to use. If given, overrides *knn*. Can be a single bandwidth, list-like (shape=[n_samples]) of bandwidths for each sample, or a *callable* that takes in an *n x n* distance matrix and returns a a single value or list-like of length n (shape=[n_samples])
- **bandwidth_scale** (*float*, optional (default : 1.0)) Rescaling factor for bandwidth.
- knn_max (int or None, optional (default : None)) Maximum number of neighbors with nonzero affinity
- **anisotropy** (float, optional (default: 0)) Level of anisotropy between 0 and 1 (alpha in Coifman & Lafon, 2006)
- **distance** (*str*, optional (default: '*euclidean*')) Any metric from *scipy.spatial.distance* can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has even more choices
- **thresh** (*float*, optional (default: *le-4*)) Threshold above which to calculate alpha decay kernel. All affinities below *thresh* will be set to zero in order to save on time and memory constraints.
- **kernel_symm** (*string*, *optional* (*default: '+'*)) Defines method of kernel symmetrization. '+' : additive '*' : multiplicative 'mnn' : min-max MNN symmetrization 'none' : no symmetrization
- **theta** (float (default: None)) Min-max symmetrization constant or matrix. Only used if kernel_symm='mnn'. K = theta * min(K, K.T) + (1 - theta) * max(K, K.T)
- **precomputed** ({'distance', 'affinity', 'adjacency', *None*}, optional (default: *None*)) If the graph is precomputed, this variable denotes which graph matrix is provided as *data*. Only one of *precomputed* and *n_pca* can be set.
- **beta** (float, optional (default: 1)) Multiply between batch connections by beta
- **sample_idx** (*array-like*) Batch index for MNN kernel
- **adaptive_k** (*{'min', 'mean', 'sqrt', 'none'}* (default: None)) Weights MNN kernel adaptively using the number of cells in each sample according to the selected method.
- n_landmark (int, optional (default: 2000)) number of landmarks to use
- **n_svd** (*int*, optional (default: 100)) number of SVD components to use for spectral clustering
- random_state (int or None, optional (default: None)) Random state for random PCA
- **verbose** (*bool*, optional (default: *True*)) Verbosity. TODO: should this be an integer instead to allow multiple levels of verbosity?
- n_jobs (*int*, optional (default : 1)) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used
- graphtype ({ 'exact', 'knn', 'mnn', 'auto'} (Default: 'auto')) - Manually selects graph type. Only recommended for expert users

- use_pygsp (bool (Default: False)) If true, inherits from pygsp.graphs.Graph.
- initialize (bool (Default: True)) If True, initialize the kernel matrix on instantiation
- ****kwargs** (extra arguments for *pygsp.graphs.Graph*) –

Returns G

Return type DataGraph

Raises ValueError : if selected parameters are incompatible.

References

```
graphtools.api.from_igraph(G, attribute='weight', **kwargs)
Convert an igraph.Graph to a graphtools.Graph
```

Creates a graphtools.graphs.TraditionalGraph with a precomputed adjacency matrix

Parameters

- G (igraph.Graph) Graph to be converted
- **attribute** (*str*, *optional* (*default:* "*weight*")) attribute containing edge weights, if any. If None, unweighted graph is built
- **kwargs** keyword arguments for graphtools.Graph

Returns G

Return type graphtools.graphs.TraditionalGraph

```
graphtools.api.read_pickle(path)
```

Load pickled Graphtools object (or any object) from file.

Parameters path (*str*) – File path where the pickled object will be loaded.

2.2 Graph Classes

class graphtools.graphs.**LandmarkGraph** (*data*, *n_landmark=2000*, *n_svd=100*, ***kwargs*) Bases: graphtools.base.DataGraph

Landmark graph

Adds landmarking feature to any data graph by taking spectral clusters and building a 'landmark operator' from clusters to samples and back to clusters. Any transformation on the landmark kernel is trivially extended to the data space by multiplying by the transition matrix.

Parameters

- **data** (array-like, shape=[n_samples, n_features]) accepted types: numpy.ndarray, scipy.sparse.spmatrix., pandas.DataFrame, pandas.SparseDataFrame.
- n_landmark (int, optional (default: 2000)) number of landmarks to use
- **n_svd** (*int*, optional (default: 100)) number of SVD components to use for spectral clustering

landmark_op

Landmark operator. Can be treated as a diffusion operator between landmarks.

Type array-like, shape=[n_landmark, n_landmark]

transitions

Transition probabilities between samples and landmarks.

Type array-like, shape=[n_samples, n_landmark]

clusters

Private attribute. Cluster assignments for each sample.

Type array-like, shape=[n_samples]

Examples

```
>>> G = graphtools.Graph(data, n_landmark=1000)
>>> X_landmark = transform(G.landmark_op)
>>> X_full = G.interpolate(X_landmark)
```

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

$build_kernel_to_data(Y)$

Build a kernel from new input data Y to the self.data

- **Parameters Y** (array-like, [n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- **Returns K_yx** kernel matrix where each row represents affinities of a single sample in *Y* to all samples in *self.data*.

Return type array-like, [n_samples_y, n_samples]

Raises

- ValueError: if this Graph is not capable of extension or
- if the supplied data is the wrong shape

```
build_landmark_op()
```

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

extend_to_data (data, **kwargs)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op

Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_landmark - n_svd

Parameters params (key-value pairs of parameter name and new values) –

Returns

Return type self

shortest_path(method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

• **method** (*string* ['*auto*'|'*FW*'|'*D*']) – method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]

- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** D D[i,j] gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

```
to_igraph (attribute='weight', **kwargs)
```

Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (*array-like*, *shape=[n_samples_y*, *n_features]*) - **n_features** must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

```
class graphtools.graphs.MNNGraph (data, sample_idx, knn=5, beta=1, n_pca=None, de-
cay=None, adaptive_k=None, bandwidth=None, dis-
tance='euclidean', thresh=0.0001, n jobs=1, **kwargs)
```

Bases: graphtools.base.DataGraph

Mutual nearest neighbors graph

Performs batch correction by forcing connections between batches, but only when the connection is mutual (i.e. x is a neighbor of y _and_ y is a neighbor of x).

Parameters

- **data** (array-like, shape=[n_samples, n_features]) accepted types: numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.
- **sample_idx** (array-like, shape=[n_samples]) Batch index
- beta (float, optional (default: 1)) Downweight between-batch affinities by beta
- **adaptive_k** ({'min', 'mean', 'sqrt', *None*} (default: None)) Weights MNN kernel adaptively using the number of cells in each sample according to the selected method.

subgraphs

Graphs representing each batch separately

Type list of graphtools.graphs.kNNGraph

ĸ

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Р

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)

Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- **theta** (array-like or *None*, optional (default: *None*)) if *self.theta* is a matrix, theta values must be explicitly specified between Y and each sample in *self.data*

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$extend_to_data(Y)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor Y is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self

shortest_path(method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.

Returns $\mathbf{D} - \mathbf{D}[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph (attribute='weight', **kwargs)

Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

K

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- **theta** (array-like or *None*, optional (default: *None*)) if *self.theta* is a matrix, theta values must be explicitly specified between Y and each sample in *self.data*

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

build_landmark_op()

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters - Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

```
extend_to_data(data, **kwargs)
```

Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform n transform features])- (array-like, shape=[n_samples,

- transitions (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op

Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params

(key-value pairs of parameter name and new

```
values)—
```

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (*string* ['auto'|'FW'|'D']) method to use. Options are 'auto': attempt to choose the best method for the current problem 'FW': Floyd-Warshall algorithm. O[N^3] 'D': Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} \mathbf{D}[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (*attribute='weight'*, **kwargs) Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

```
Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features
must be the same as self.data.
```

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

```
class graphtools.graphs.MNNLandmarkPyGSPGraph(data,
                                                           sample_idx,
                                                                       knn=5,
                                                                                beta=1.
                                                     n_pca=None,
                                                                   decay=None,
                                                                                 adap-
                                                     tive_k=None,
                                                                  bandwidth=None,
                                                                                   dis-
                                                                          thresh=0.0001,
                                                     tance='euclidean',
                                                     n jobs=1, **kwargs)
                  graphtools.graphs.MNNGraph,
    Bases:
                                                      graphtools.graphs.LandmarkGraph,
    graphtools.base.PyGSPGraph
```

A

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()

Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- **theta** (array-like or *None*, optional (default: *None*)) if *self.theta* is a matrix, theta values must be explicitly specified between Y and each sample in *self.data*

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

build_landmark_op()

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- is_not_square (bool) True if the matrix is not square else false
- diag_is_not_zero (bool) True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

$$L = D^T D,$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (*bool*) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

 $L = U\Lambda U^*,$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True</pre>
```

compute_laplacian (lap_type='combinatorial')

Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$L = D - W,$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

 $\operatorname{div}(s)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s,$$

where D is the differential operator D.

Parameters s (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

```
compute_differential_operator()
```

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (data, **kwargs)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

```
transform_Y = transitions.dot(transform)
```

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

$$\hat{s} = U^* s,$$

where U is the Fourier basis attr: U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed (g, f, lowmemory=True)

Windowed graph Fourier transform.

Parameters

- g (ndarray or Filter) Window (graph signal or kernel).
- **f** (*ndarray*) Graph signal in the vertex domain.
- lowmemory (bool) Use less memory (default=True).

Returns C - Coefficients.

Return type ndarray

```
gft_windowed_gabor(s, k)
```

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- **k** (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g**(*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C - Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

y = Ds,

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

 $s = U\hat{s},$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s - Representation of s_hat in the vertex domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>
```

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees - Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op

Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax

Largest eigenvalue of the graph Laplacian.

```
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
```

modulate(f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (*ndarray*) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is compute_fourier_basis().

```
plot (**kwargs)
Plot the graph.
```

See pygsp.plotting.plot_graph().

plot_signal (signal, **kwargs)
 Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
 Plot the graph's spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates (kind='spring', **kwargs)

Set node's coordinates (their position when plotting).

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

```
Parameters params values) -
```

(key-value pairs of parameter name and new

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.

Returns $\mathbf{D} - D[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)

Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

 $Returns \ sub_G-Subgraph$

Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel(K)

```
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
```

Uses the igraph.Graph constructor

Parameters

```
• attribute(str, optional (default: "weight"))-
```

• kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate (f, i)

Translate the signal f to the node i.

Parameters

• **f** (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.**MNNPyGSPGraph**(*data*, *sample_idx*, *knn=5*, *beta=1*, *n_pca=None*,

decay=None, adaptive_k=None, bandwidth=None,

 $distance='euclidean', thresh=0.0001, n_jobs=1,$

**kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.base.PyGSPGraph

A

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
U

Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()

Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- **theta** (array-like or *None*, optional (default: *None*)) if *self.theta* is a matrix, theta values must be explicitly specified between Y and each sample in *self.data*

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- is_not_square (bool) True if the matrix is not square else false
- diag_is_not_zero (bool) True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

$$L = D^T D,$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the *D* property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$L = U\Lambda U^*,$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
```

(continues on next page)

(continued from previous page)

```
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True
```

compute_laplacian (*lap_type='combinatorial'*) Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$L = D - W,$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -le-10 < G.e[0] < le-10 # Smallest eigenvalue close to 0.
True
>>>
Sompute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -le-10 < G.e[0] < le-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$\mathbf{div}(s)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s$$

where D is the differential operator D.

Parameters s (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

$extend_to_data(Y)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- **v_out** (vector of int)
- weights (vector of float)

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

 $\hat{s} = U^* s,$

where U is the Fourier basis attr: U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed (*g*, *f*, *lowmemory=True*) Windowed graph Fourier transform.

Parameters

- g (ndarray or Filter) Window (graph signal or kernel).
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory (default=True).

Returns C - Coefficients.

Return type ndarray

```
gft_windowed_gabor(s, k)
```

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- k (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g**(*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

y = Ds,

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$s = U\hat{s},$$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor *Y* is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- columns (list-like) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

```
is_connected(recompute=False)
```

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (*bool*) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

lmax

Largest eigenvalue of the graph Laplacian.

```
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
```

modulate (f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (*ndarray*) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is compute by compute fourier_basis().

plot (**kwargs)

Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal (signal, **kwargs)

Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)

Plot the graph's spectrogram.

```
See pygsp.plotting.plot_spectrogram().
```

set_coordinates (kind='spring', **kwargs)

Set node's coordinates (their position when plotting).

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} \mathbf{D}[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)

Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G - Subgraph

Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel(K)

to_igraph (*attribute='weight'*, **kwargs) Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute(str, optional (default: "weight"))-

```
• kwargs (additional arguments for igraph.Graph) -
```

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by *self.data*

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate (f, i)

Translate the signal *f* to the node *i*.

Parameters

• f (ndarray) - Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.**TraditionalGraph**(*data*, *knn=5*, *decay=40*, *bandwidth=None*, *bandwidth_scale=1.0*, distance='euclidean'. n pca=None, *thresh*=0.0001, precomputed=None, **kwargs)

Bases: graphtools.base.DataGraph

Traditional weighted adjacency graph

Parameters

- data (array-like, shape=[n_samples, n_features]) accepted types: numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame. If precomputed is not None, data should be an [n_samples, n_samples] matrix denoting pairwise distances, affinities, or edge weights.
- knn (int, optional (default: 5)) Number of nearest neighbors (including self) to use to build the graph
- decay (int or None, optional (default: 40)) Rate of alpha decay to use. If None, alpha decay is not used.
- bandwidth (float, list-like, 'callable', or None, optional (default: None)) Fixed bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like

(shape=[n_samples]) of bandwidths for each sample, or a *callable* that takes in a $n \times m$ matrix and returns a single value or list-like of length n (shape=[n_samples])

- bandwidth_scale (*float*, optional (default : 1.0)) Rescaling factor for bandwidth.
- **distance** (*str*, optional (default: '*euclidean*')) Any metric from *scipy.spatial.distance* can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has even more choices
- n_pca ({*int, None, bool,* 'auto'}, optional (default: *None*)) number of PC dimensions to retain for graph building. If n_pca in [*None,False,0*], uses the original data. If *True* then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- rank_threshold (*float*, 'auto', optional (default: 'auto')) threshold to use when estimating rank for *n_pca in [True, 'auto']*. Note that the default kwarg is *None* for this parameter. It is subsequently parsed to 'auto' if necessary. If 'auto', this threshold is smax * np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795.
- **thresh** (*float*, optional (default: *le-4*)) Threshold above which to calculate alpha decay kernel. All affinities below *thresh* will be set to zero in order to save on time and memory constraints.
- **precomputed** ({'distance', 'affinity', 'adjacency', *None*},) optional (default: *None*) If the graph is precomputed, this variable denotes which graph matrix is provided as *data*. Only one of *precomputed* and *n_pca* can be set.

ĸ

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If *precomputed* is not *None*, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if *precomputed* is not an acceptable value

build_kernel_to_data (*Y*, *knn=None*, *bandwidth=None*, *bandwidth_scale=None*) Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if precomputed is not None, then the graph cannot
- be extended.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$extend_to_data(Y)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor Y is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees - Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay - bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self

shortest_path(method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (*string* ['auto'|'FW'|'D']) – method to use. Options are 'auto': attempt to choose the best method for the current problem 'FW': Floyd-Warshall algorithm. O[N^3] 'D': Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]

- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** D D[i,j] gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

```
to_igraph (attribute='weight', **kwargs)
```

Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

```
class graphtools.graphs.TraditionalLandmarkGraph (data, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0,
distance='euclidean', n_pca=None,
thresh=0.0001, precomputed=None,
**kwargs)
```

 $Bases: \ graph tools. graphs. Traditional Graph, \ graph tools. graphs. \ Landmark Graph$

K

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If *precomputed* is not *None*, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if *precomputed* is not an acceptable value

build_kernel_to_data (*Y*, *knn=None*, *bandwidth=None*, *bandwidth_scale=None*) Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if *precomputed* is not *None*, then the graph cannot
- be extended.

build_landmark_op()

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters - Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

extend_to_data (data, **kwargs)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op

Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay - bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new values) –

Returns

Return type self

shortest_path(method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (*string* ['auto'|'FW'|'D']) – method to use. Options are 'auto': attempt to choose the best method for the current problem 'FW': Floyd-Warshall algorithm. O[N^3] 'D': Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]

- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** D D[i,j] gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

```
to_igraph (attribute='weight', **kwargs)
```

Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (*array-like*, *shape=[n_samples_y*, *n_features]*) - **n_features** must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

A

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is compute_differential_operator().

ĸ

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If *precomputed* is not *None*, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if *precomputed* is not an acceptable value

build_kernel_to_data (*Y*, *knn=None*, *bandwidth=None*, *bandwidth_scale=None*) Build transition matrix from new data to the graph Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

- *transform_Y = transitions.dot(transform)*
 - **Parameters Y** (*array-like*, [*n_samples_y*, *n_features*]) new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions
 - **Returns transitions** Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if *precomputed* is not None, then the graph cannot
- be extended.

build_landmark_op()

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- **is_not_square** (*bool*) True if the matrix is not square else false
- diag_is_not_zero (bool) True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters - Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

 $L = D^T D,$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the *D* property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis(recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

 $L = U\Lambda U^*,$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True</pre>
```

```
compute_laplacian (lap_type='combinatorial')
Compute a graph Laplacian.
```

The result is accessible by the L attribute.

```
Parameters lap_type('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.
```

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$L = D - W,$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -le-10 < G.e[0] < le-10 # Smallest eigenvalue close to 0.
True
>>>
S.>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -le-10 < G.e[0] < le-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

 $\mathbf{div}\left(s\right)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s,$$

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (data, **kwargs)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- v_out (vector of int)
- weights (vector of float)

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

 $\hat{s} = U^* s,$

where U is the Fourier basis attr: U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed (*g*, *f*, *lowmemory=True*) Windowed graph Fourier transform.

Parameters

- g (ndarray or Filter) Window (graph signal or kernel).
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (bool) Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

```
gft_windowed_gabor(s, k)
```

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- k (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g**(*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

y = Ds,

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$s = U\hat{s},$$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

```
is_connected(recompute=False)
```

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random

vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op

Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax

Largest eigenvalue of the graph Laplacian.

```
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
```

modulate (f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (*ndarray*) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is compute_fourier_basis().

plot (**kwargs)

Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal (signal, **kwargs)
 Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)

Plot the graph's spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates (kind='spring', **kwargs)

Set node's coordinates (their position when plotting).

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay - bandwidth - bandwidth_scale

```
Parameters params values) -
```

(key-value pairs of parameter name and new

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'|'FW'|'D']) method to use. Options are 'auto': attempt to choose the best method for the current problem 'FW': Floyd-Warshall algorithm. O[N^3] 'D': Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} \mathbf{D}[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)

Create a subgraph given indices.

Parameters ind (*list*) – Nodes to keep

Returns sub_G - Subgraph

Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel(K)

```
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
```

Uses the igraph.Graph constructor

Parameters

- **attribute**(*str*, *optional* (*default*: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)

Translate the signal f to the node i.

Parameters

- f (ndarray) Signal
- i (int) Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.TraditionalPyGSPGraph (data, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', n_pca=None, thresh=0.0001, precomputed=None, **kwargs) Bases: graphtools.graphs.TraditionalGraph, graphtools.base.PyGSPGraph

Α

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).

Is compute_fourier_basis().

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If *precomputed* is not *None*, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if *precomputed* is not an acceptable value

build_kernel_to_data (*Y*, *knn=None*, *bandwidth=None*, *bandwidth_scale=None*)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

transform_Y = transitions.dot(transform)

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if precomputed is not None, then the graph cannot
- be extended.

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- is_not_square (bool) True if the matrix is not square else false
- diag_is_not_zero (bool) True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == { 'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

$$L = D^T D,$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis(recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (*bool*) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

 $L = U\Lambda U^*,$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True</pre>
```

compute_laplacian (*lap_type='combinatorial'*) Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

L = D - W,

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples
```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
Sc.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
Sc.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$\mathbf{div}(s)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s,$$

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

```
compute_differential_operator()
```

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

$\texttt{extend_to_data}\left(Y\right)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- **v_out** (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

$$\hat{s} = U^* s,$$

where U is the Fourier basis attr: U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed (g, f, lowmemory=True)

Windowed graph Fourier transform.

Parameters

- g (ndarray or Filter) Window (graph signal or kernel).
- **f** (*ndarray*) Graph signal in the vertex domain.
- lowmemory (bool) Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

```
gft_windowed_gabor(s, k)
```

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- **k** (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g**(*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C - Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

y = Ds,

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

 $s = U\hat{s},$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s - Representation of s_hat in the vertex domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>
```

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor *Y* is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

lmax

Largest eigenvalue of the graph Laplacian.

```
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
```

modulate (f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (*ndarray*) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot (**kwargs)

Plot the graph.

See pygsp.plotting.plot_graph().

```
plot_signal (signal, **kwargs)
    Plot a signal on that graph.
```

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)

Plot the graph's spectrogram.

See pygsp.plotting.plot_spectrogram().

```
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).
```

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay - bandwidth - bandwidth_scale

```
Parameters params (key-value pairs of parameter name and new values)-
```

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (*string* ['auto'|'FW'|'D']) method to use. Options are 'auto': attempt to choose the best method for the current problem 'FW': Floyd-Warshall algorithm. O[N^3] 'D': Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} \mathbf{D}[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)

Create a subgraph given indices.

Parameters ind (*list*) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel(K)

```
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
```

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate (f, i)

Translate the signal f to the node i.

Parameters

• **f** (*ndarray*) – Signal

• i (*int*) – Indices of vertex

Returns ft

Return type translate signal

weighted

Bases: graphtools.base.DataGraph

K nearest neighbors graph

Parameters

- **data** (array-like, shape=[n_samples, n_features]) accepted types: numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.
- knn (*int*, optional (default: 5)) Number of nearest neighbors (including self) to use to build the graph
- **decay** (*int* or *None*, optional (default: *None*)) Rate of alpha decay to use. If *None*, alpha decay is not used.
- **bandwidth** (*float*, list-like, 'callable', or *None*,) optional (default: *None*) Fixed bandwidth to use. If given, overrides *knn*. Can be a single bandwidth, or a list-like (shape=[n_samples]) of bandwidths for each sample
- **bandwidth_scale** (*float*, optional (default : 1.0)) Rescaling factor for bandwidth.
- distance (*str*, optional (default: '*euclidean*')) Any metric from *scipy.spatial.distance* can be used distance metric for building kNN graph. Custom distance functions of form *f*(*x*, *y*) = *d* are also accepted. TODO: actually sklearn.neighbors has even more choices
- **thresh** (*float*, optional (default: *le-4*)) Threshold above which to calculate alpha decay kernel. All affinities below *thresh* will be set to zero in order to save on time and memory constraints.

knn_tree

The fitted KNN tree. (cached) TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Type sklearn.neighbors.NearestNeighbors

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

Build a kernel from new input data Y to the *self.data*

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) If None, defaults to self.knn
- **bandwidth** (*float*, *callable*, or *None*, optional (default: *None*)) If *None*, defaults to *self.bandwidth*
- **bandwidth_scale** (*float*, optional (default : *None*)) Rescaling factor for bandwidth. If *None*, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in *Y* to all samples in *self.data*.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$extend_to_data(Y)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor *Y* is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by *self.data*

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

```
set_params(**params)
```

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

```
Parameters params (key-value pairs of parameter name and new
```

```
values)-
```

Returns

Return type self

shortest_path(method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} D[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (*attribute='weight'*, **kwargs) Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by *self.data*

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.graphs.kNNLandmarkGraph(data, knn=5, decay=None, knn_max=None, search multiplier=6, bandwidth=None. *bandwidth_scale=1.0*, distance='euclidean', thresh=0.0001, n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph

ĸ

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n samples, n samples]

bandbuild_kernel_to_data(Y, knn=None, knn max=None, bandwidth=None, *width scale=None*)

Build a kernel from new input data Y to the self.data

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) If None, defaults to self.knn
- **bandwidth** (*float*, *callable*, or *None*, optional (default: *None*)) If *None*, defaults to *self.bandwidth*
- **bandwidth_scale** (*float*, optional (default : *None*)) Rescaling factor for bandwidth. If *None*, defaults to self.bandwidth_scale
- **Returns K_yx** kernel matrix where each row represents affinities of a single sample in *Y* to all samples in *self.data*.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

build_landmark_op()

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

extend_to_data(data, **kwargs)

Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing

transform_Y = *transitions.dot(transform)*

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

```
interpolate (transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data
```

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type *sklearn.neighbors.NearestNeighbors*

landmark_op

Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

```
set_params(**params)
```

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new

values)-

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto' | 'FW' | 'D']) method to use. Options are 'auto': attempt to choose the best method for the current problem 'FW': Floyd-Warshall algorithm. O[N^3] 'D': Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} D[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

```
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
```

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

```
Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features
must be the same as self.data.
```

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class	graphtools	.graphs. kN	NLandmarkPyGSPGraph	(data, kr	nn=5,	decay=None,
				knn_max=None	e, search	h_multiplier=6,
				bandwidth=No	ne, bandwi	idth_scale=1.0,
				distance='eucl	idean',	thresh=0.0001,
				n_pca=None, *	**kwargs)	
B	ases:	graphtools.	graphs.kNNGraph,	graphtool	s.graphs	.LandmarkGraph,
g.	raphtools.k	base.PyGSPG	raph			

A

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is compute_differential_operator().

Κ

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) If None, defaults to self.knn
- **bandwidth** (*float*, *callable*, or *None*, optional (default: *None*)) If *None*, defaults to *self.bandwidth*
- **bandwidth_scale** (*float*, optional (default : *None*)) Rescaling factor for bandwidth. If *None*, defaults to self.bandwidth_scale
- **Returns K_yx** kernel matrix where each row represents affinities of a single sample in *Y* to all samples in *self.data*.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

build_landmark_op()

Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- is_not_square (bool) True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

clusters

Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters - Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

$$L = D^T D$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis(recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (*bool*) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

 $L = U\Lambda U^*,$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True</pre>
```

compute_laplacian (*lap_type='combinatorial'*) Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

L = D - W,

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
Sc.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
Sc.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$\operatorname{div}(s)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s,$$

where D is the differential operator D.

Parameters s (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

```
compute_differential_operator()
```

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data(data, **kwargs)

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to *Y* by performing

```
transform_Y = transitions.dot(transform)
```

Parameters Y (*array-like*, [*n_samples_y*, *n_features*]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

 $\hat{s} = U^* s,$

where U is the Fourier basis attr: U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed (g, f, lowmemory=True)

Windowed graph Fourier transform.

Parameters

- g (ndarray or Filter) Window (graph signal or kernel).
- **f** (*ndarray*) Graph signal in the vertex domain.
- lowmemory (bool) Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

```
gft_windowed_gabor(s, k)
```

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- **k** (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g**(*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C - Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

$$y = Ds$$
,

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$s = U\hat{s},$$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s - Representation of s_hat in the vertex domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>
```

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

landmark_op

Landmark operator

Compute or return the landmark operator

- **Returns landmark_op** Landmark operator. Can be treated as a diffusion operator between landmarks.
- Return type array-like, shape=[n_landmark, n_landmark]

lmax

Largest eigenvalue of the graph Laplacian.

Can be exactly computed by *compute_fourier_basis()* or approximated by *estimate_lmax()*.

modulate (f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (*ndarray*) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm - Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is compute_fourier_basis().

plot (**kwargs)

Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal (signal, **kwargs)
 Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)

Plot the graph's spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates (kind='spring', **kwargs)

Set node's coordinates (their position when plotting).

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

```
Parameters params (key-value pairs of parameter name and new values) -
```

Returns

Return type self

shortest_path(method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** D D[i,j] gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)

Create a subgraph given indices.

Parameters ind (*list*) – Nodes to keep

Returns sub_G - Subgraph

Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel(K)

to_igraph (*attribute='weight'*, **kwargs) Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by *self.data*

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as self.data nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions - Transition probabilities between samples and landmarks.

Return type array-like, shape=[n samples, n landmark]

translate (f, i)

Translate the signal f to the node i.

Parameters

- f (ndarray) Signal
- i (int) Indices of vertex

Returns ft

Return type translate signal

weighted

```
class graphtools.graphs.kNNPyGSPGraph (data,
                                                     knn=5,
                                                              decay=None,
                                                                            knn max=None,
                                              search_multiplier=6,
                                                                  bandwidth=None,
                                                                                     band-
                                              width scale=1.0,
                                                                        distance='euclidean'.
                                              thresh=0.0001, n pca=None, **kwargs)
     Bases: graphtools.graphs.kNNGraph, graphtools.base.PyGSPGraph
```

Α

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()

Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

- Y (array-like, [n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) If None, defaults to self.knn
- **bandwidth** (*float*, *callable*, or *None*, optional (default: *None*)) If *None*, defaults to *self.bandwidth*
- **bandwidth_scale** (*float*, optional (default : *None*)) Rescaling factor for bandwidth. If *None*, defaults to self.bandwidth_scale
- **Returns K_yx** kernel matrix where each row represents affinities of a single sample in *Y* to all samples in *self.data*.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- is_not_square (bool) True if the matrix is not square else false
- diag_is_not_zero (bool) True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

 $L = D^T D,$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$L = U\Lambda U^*,$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True</pre>
```

compute_laplacian (lap_type='combinatorial')

Compute a graph Laplacian.

The result is accessible by the L attribute.

```
Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.
```

Notes

For undirected graphs, the combinatorial Laplacian is defined as

L = D - W,

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
Somoute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x,y) = K(x,y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

 $\mathbf{div}(s)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s,$$

where D is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

$extend_to_data(Y)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
```

(continues on next page)
(continued from previous page)

```
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- **v_out** (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

 $\hat{s} = U^* s,$

where U is the Fourier basis attr:U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed(g, f, lowmemory=True)

Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- k (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g** (*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

$$y = Ds,$$

where D is the differential operator D.

Parameters s (ndarray) - Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

 $s = U\hat{s},$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>
```

interpolate(transform, transitions=None, Y=None)

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- **transitions** (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. *n_features* must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor Y is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (*bool*) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees - Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

lmax

Largest eigenvalue of the graph Laplacian.

Can be exactly computed by *compute_fourier_basis()* or approximated by *estimate_lmax()*.

modulate(f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (*ndarray*) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot (**kwargs)

Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal (signal, **kwargs) Plot a signal on that graph.

See pygsp.plotting.plot_signal().

See pygsp.plotting.plot_spectrogram().

set coordinates (kind='spring', **kwargs)

Set node's coordinates (their position when plotting).

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

```
Parameters params (key-value pairs of parameter name and new values) –
```

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} D[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)

Create a subgraph given indices.

Parameters ind(list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

$symmetrize_kernel(K)$

to_igraph (*attribute='weight'*, **kwargs) Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

$\texttt{translate}\left(f,\,i\right)$

Translate the signal f to the node i.

Parameters

• f (ndarray) - Signal

• i (*int*) – Indices of vertex

Returns ft

Return type translate signal

weighted

2.3 Base Classes

class graphtools.base.Base

Bases: object

Class that deals with key-word arguments but is otherwise just an object.

set_params(**kwargs)

Bases: graphtools.base.Base

Parent graph class

Parameters

- **kernel_symm** (*string*, *optional* (*default: '+'*)) Defines method of kernel symmetrization. '+' : additive '*' : multiplicative 'mnn' : min-max MNN symmetrization 'none' : no symmetrization
- theta (float (default: 1)) Min-max symmetrization constant. K = theta * min(K, K.T) + (1 theta) * max(K, K.T)
- **anisotropy** (float, optional (default: 0)) Level of anisotropy between 0 and 1 (alpha in Coifman & Lafon, 2006)
- **initialize** (*bool*, optional (default : *True*)) if false, don't create the kernel matrix.

ĸ

kernel matrix defined as the adjacency matrix with ones down the diagonal

Type array-like, shape=[n_samples, n_samples]

kernel

Type synonym for *K*

Р

diffusion operator defined as a row-stochastic form of the kernel matrix

Type array-like, shape=[n_samples, n_samples] (cached)

diff_op

Type synonym for *P*

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Ρ

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

get_params()

Get parameters from this object

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: Invalid parameters: (these would require modifying the kernel matrix) - kernel_symm - theta

Parameters params

(key-value pairs of parameter name and new

values)-

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} D[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

```
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
```

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

weighted

Bases: graphtools.base.Base

Parent class that handles the import and dimensionality reduction of data

Parameters

• **data** (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix. pandas.DataFrame, pandas.SparseDataFrame.

- **n_pca** ({*int*, *None*, *bool*, 'auto'}, optional (default: *None*)) number of PC dimensions to retain for graph building. If n_pca in [*None*, *False*, 0], uses the original data. If 'auto' or *True* then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- **rank_threshold** (*float*, 'auto', optional (default: 'auto')) threshold to use when estimating rank for *n_pca in [True, 'auto']*. If 'auto', this threshold is s_max * eps * max(n_samples, n_features) where s_max is the maximum singular value of the data matrix and eps is numerical precision. [press2007].
- random_state (int or None, optional (default: None)) Random state for random PCA

data

Original data matrix

Type array-like, shape=[n_samples,n_features]

n_pca

Type int or None

data_nu

Reduced data matrix

Type array-like, shape=[n_samples,n_pca]

data_pca

sklearn PCA operator

Type sklearn.decomposition.PCA or sklearn.decomposition.TruncatedSVD

get_params()

Get parameters from this object

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_pca - random_state

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self

transform(Y)

Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as *self.data*.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

class graphtools.base.DataGraph(data, verbose=True, n_jobs=1, **kwargs)
Bases: graphtools.base.Data, graphtools.base.BaseGraph

Abstract class for graphs built from a dataset

Parameters

- data (array-like, shape=[n_samples, n_features]) accepted types: numpy.ndarray, scipy.sparse.spmatrix.
- **n_pca** ({*int*, *None*, *bool*, 'auto'}, optional (default: *None*)) number of PC dimensions to retain for graph building. If n_pca in [*None*, *False*, 0], uses the original data. If *True* then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- rank_threshold (*float*, 'auto', optional (default: 'auto')) threshold to use when estimating rank for *n_pca in [True, 'auto']*. Note that the default kwarg is *None* for this parameter. It is subsequently parsed to 'auto' if necessary. If 'auto', this threshold is smax * np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795.
- **random_state** (*int* or *None*, optional (default: *None*)) Random state for random PCA and graph building
- **verbose** (*bool*, optional (default: *True*)) Verbosity.
- **n_jobs** (*int*, optional (default : 1)) The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used

ĸ

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

Р

Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()

Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y)

Build a kernel from new input data Y to the self.data

- **Parameters Y** (array-like, [n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- **Returns K_yx** kernel matrix where each row represents affinities of a single sample in *Y* to all samples in *self.data*.

Return type array-like, [n_samples_y, n_samples]

Raises

- ValueError: if this Graph is not capable of extension or
- if the supplied data is the wrong shape

diff_aff

Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

$$A(x, y) = K(x, y)(d(x)d(y))^{-1/2}$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P

$extend_to_data(Y)$

Build transition matrix from new data to the graph

Creates a transition matrix such that *Y* can be approximated by a linear combination of samples in *self.data*. Any transformation of *self.data* can be trivially applied to *Y* by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns transitions – Transition matrix from *Y* to *self.data*

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object

```
interpolate (transform, transitions=None, Y=None)
```

Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform n_transform_features])- (array-like, shape=[n_samples,

- transitions (array-like, optional, shape=[n_samples_y, n_samples]) Transition matrix from Y (not provided) to *self.data*
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from *Y* to *self.data*

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither *transitions* nor Y is provided

inverse_transform(Y, columns=None)

Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as *self.data_nu* and transforms it to be in the same ambient space as *self.data*.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) n_features must be the same as *self.data_nu*.
- **columns** (*list-like*) list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - verbose

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self

shortest_path (method='auto', distance=None)

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- **method** (*string* ['*auto*'|'*FW*'|'*D*']) method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. O[N^3] 'D' : Dijkstra's algorithm with Fibonacci stacks. O[(k+log(N))N^2]
- distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
- **Returns** $\mathbf{D} \mathbf{D}[i,j]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (*attribute='weight'*, **kwargs) Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute(str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph) -

to_pickle(path)

Save the current Graph to a pickle.

Parameters path (*str*) – File path where the pickled object will be stored.

to_pygsp(**kwargs)

Convert to a PyGSP graph

For use only when the user means to create the graph using the flag *use_pygsp=True*, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)

Transform input data Y to reduced data space defined by *self.data*

Takes data in the same ambient space as *self.data* and transforms it to be in the same reduced space as *self.data_nu*.

```
Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features
must be the same as self.data.
```

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

Bases: pygsp.graphs.graph.Graph, graphtools.base.Base

Interface between BaseGraph and PyGSP.

All graphs should possess these matrices. We inherit a lot of functionality from pygsp.graphs.Graph.

There is a lot of overhead involved in having both a weight and kernel matrix

A

Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i,j}$ is True if $W_{i,j} > 0$.

D

Differential operator (for gradient and divergence).

Is compute_differential_operator().

к

Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).

```
Is compute_fourier_basis().
```

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) True if the matrix has infinite values else false
- has_nan_value (bool) True if the matrix has a "not a number" value else false
- is_not_square (bool) True if the matrix is not square else false
- diag_is_not_zero (bool) True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

```
L = D^T D,
```

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the *D* property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis(recompute=False)

Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e, 1max, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$L = U\Lambda U^*,$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.

G.e is a vector of length *G.N* containing the Laplacian eigenvalues. The largest eigenvalue is stored in *G.lmax*. The eigenvectors are stored as column vectors of *G.U* in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in *G.mu*.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True</pre>
```

compute_laplacian (lap_type='combinatorial')

Compute a graph Laplacian.

The result is accessible by the L attribute.

```
Parameters lap_type('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.
```

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$L = D - W,$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$L = I - D^{-1/2} W D^{-1/2},$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
S.Compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True</pre>
```

d

The degree (the number of neighbors) of each node.

 $\mathbf{div}(s)$

Compute the divergence of a graph signal.

The divergence of a signal s is defined as

$$y = D^T s,$$

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.

е

Eigenvalues of the Laplacian (square of graph frequencies).

Is compute_fourier_basis().

estimate_lmax(recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).

The result is cached and accessible by the *lmax* property.

Exact value given by the eigendecomposition of the Laplacian, see *compute_fourier_basis()*. That estimation is much faster than the eigendecomposition.

Parameters recompute (*boolean*) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extract_components()

Split the graph into connected components.

See *is_connected()* for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- v_in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

gft(s)

Compute the graph Fourier transform.

The graph Fourier transform of a signal s is defined as

$$\hat{s} = U^* s,$$

where U is the Fourier basis attr:U and U^* denotes the conjugate transpose or Hermitian transpose of U.

Parameters s (*ndarray*) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True</pre>
```

gft_windowed (g, f, lowmemory=True)

Windowed graph Fourier transform.

Parameters

- g (ndarray or Filter) Window (graph signal or kernel).
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (bool) Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)

Gabor windowed graph Fourier transform.

Parameters

- **s** (*ndarray*) Graph signal in the vertex domain.
- **k** (function) Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (*g*, *f*, *lowmemory=True*) Normalized windowed graph Fourier transform.

Parameters

- **g**(*ndarray*) Window.
- **f** (*ndarray*) Graph signal in the vertex domain.
- **lowmemory** (*bool*) Use less memory. (default = True)

Returns C - Coefficients.

Return type ndarray

grad(s)

Compute the gradient of a graph signal.

The gradient of a signal s is defined as

y = Ds,

where D is the differential operator D.

Parameters s (*ndarray*) – Signal of length G.N living on the nodes.

Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True</pre>
```

igft (s_hat)

Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

 $s = U\hat{s},$

where U is the Fourier basis U.

Parameters s_hat (*ndarray*) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True</pre>
```

is_connected(recompute=False)

Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed(recompute=False)

Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```

lmax

Largest eigenvalue of the graph Laplacian.

```
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
```

modulate (f, k)

Modulate the signal f to the frequency k.

Parameters

- **f** (ndarray) Signal (column)
- **k** (*int*) Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu

Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot (**kwargs)

Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal (signal, **kwargs)
 Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)

Plot the graph's spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates (kind='spring', **kwargs)

Set node's coordinates (their position when plotting).

Parameters

- **kind** (*string or array-like*) Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- **kwargs** (*dict*) Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params(**kwargs)

subgraph(ind)

Create a subgraph given indices.

Parameters ind (*list*) – Nodes to keep

Returns sub_G - Subgraph

Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

translate (f, i)

Translate the signal f to the node i.

Parameters

- **f** (*ndarray*) Signal
- i (int) Indices of vertex

Returns ft

Return type translate signal

2.4 Utilities

graphtools.utils.check_between (v_min, v_max, **params)
 Checks parameters are in a specified range

Parameters

- **v_min**(float, minimum allowed value (inclusive))-
- **v_max**(float, maximum allowed value (inclusive))-
- **params** (*object*) Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_greater(x, **params)

Check that parameters are greater than x as expected

Parameters x (excepted boundary) – Checks not run if parameters are greater than x

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_if_not (x, *checks, **params)

Run checks only if parameters are not equal to a specified value

Parameters

- **x** (excepted value) Checks not run if parameters equal x
- checks (function) Unnamed arguments, check functions to be run
- params (object) Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_in(choices, **params)

Checks parameters are in a list of allowed parameters

Parameters

- choices (array-like, accepted values) -
- params (object) Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_int(**params)

Check that parameters are integers as expected

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_positive (**params)
 Check that parameters are positive as expected

Raises ValueError : unacceptable choice of parameters

- graphtools.utils.dense_nonzero_discrete(*args, **kwargs)
- graphtools.utils.dense_set_diagonal(*args, **kwargs)
- graphtools.utils.elementwise_maximum(*args, **kwargs)
- graphtools.utils.elementwise_minimum(*args, **kwargs)
- graphtools.utils.if_sparse(*args, **kwargs)
- graphtools.utils.**is_Anndata**(X)
- graphtools.utils.**is_DataFrame**(X)
- graphtools.utils.is_SparseDataFrame(X)
- graphtools.utils.matrix_is_equivalent(*args, **kwargs)
- graphtools.utils.nonzero_discrete(*args, **kwargs)
- graphtools.utils.set_diagonal(*args, **kwargs)
- graphtools.utils.set_submatrix(*args, **kwargs)
- graphtools.utils.sparse_maximum(*args, **kwargs)
- graphtools.utils.sparse_minimum(*args, **kwargs)
- graphtools.utils.sparse_nonzero_discrete(*args, **kwargs)
- graphtools.utils.sparse_set_diagonal(*args, **kwargs)
- graphtools.utils.to_array(*args, **kwargs)

CHAPTER 3

Quick Start

To use graphtools, create a graphtools.Graph class:

```
from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'])
K = G.kernel
P = G.diff_op
G = graphtools.Graph(digits['data'], n_landmark=300)
L = G.landmark_op
```

To use *graphtools* with *pygsp*, create a *graphtools*.*Graph* class with *use_pygsp=True*:

```
from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'], use_pygsp=True)
N = G.N
W = G.W
basis = G.compute_fourier_basis()
```

CHAPTER 4

Help

If you have any questions or require assistance using graphtools, please contact us at https://krishnaswamylab.org/get-help

Bibliography

[press2007] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795.

Python Module Index

g

graphtools.api,5
graphtools.base,112
graphtools.graphs,7
graphtools.utils,129

Index

A

A (graphtools.base.PyGSPGraph attribute), 12	0
A (graphtools.graphs.kNNLandmarkPy	GSPGraph
attribute), 86	ŕ
A (graphtools.graphs.kNNPyGSPGraph attribu	ıte), 99
A (graphtools.graphs.MNNLandmarkPyGSPG	Graph at-
tribute), 19	1
A (graphtools.graphs.MNNPyGSPGraph attrib	oute), 32
A (graphtools.graphs.TraditionalLandmarkPy	GSPGraph
attribute), 53	_
A (graphtools.graphs.TraditionalPyGSPGraph	attribute),
65	
apply_anisotropy() (graphtools.base.l	BaseGraph
<i>method</i>), 113	
apply_anisotropy() (graphtools.base.l	DataGraph
<i>method</i>), 116	
apply_anisotropy()	(graph-
tools.graphs.kNNGraph method), 79	
apply_anisotropy()	(graph-
tools.graphs.kNNL and markGraph	method),
82	
apply_anisotropy()	(graph-
tools.graphs.kNNL and markPyGSPG	raph
method), 87	
apply_anisotropy()	(graph-
tools.graphs.kNNPyGSPGraph	method),
100	
apply_anisotropy()	(graph-
tools.graphs.LandmarkGraph metho	d), 8
apply_anisotropy()	(graph-
tools.graphs.MNNGraph method), 12	2
apply_anisotropy()	(graph-
tools.graphs.MNNL and markGraph	method),
16	
apply_anisotropy()	(graph-
tools.graphs.MNNLandmarkPyGSPC	Graph
method), 20	, -
apply_anisotropy()	(graph-
tools.graphs.MNNPyGSPGraph	method),

33

apply_anisotropy()	(graph-	
tools.graphs.TraditionalGraph	method),	
45		
apply_anisotropy()	(graph-	

- tools.graphs.TraditionalLandmarkGraph method), 49 apply_anisotropy() (graph-
- apply_anisotropy() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 53
- apply_anisotropy() (graphtools.graphs.TraditionalPyGSPGraph method), 66

В

Base (d	class in graphte	ools.base), 112	
BaseGi	caph (class in	graphtools.base), 112	
build_	_kernel()	(graphtools.base.)	BaseGraph
	<i>method</i>), 113		
build_	_kernel()	(graphtools.base.l	DataGraph
	method), 117	,	
build_	_kernel()	(graphtools.graphs.	kNNGraph
	method), 79		
build_	_kernel()		(graph-
	tools.graphs.	kNNLandmarkGraph	method),
	82		
build_	_kernel()		(graph-
	tools.graphs.	kNNLandmarkPyGSPG	raph
	method), 87		
build_	_kernel()		(graph-
	tools.graphs.	kNNPyGSPGraph	method),
	100		
build_	_kernel()		(graph-
	tools.graphs.	LandmarkGraph metho	d), 8
build_	_kernel()	(graphtools.graphs.M	4NNGraph
	method), 12		
build_	_kernel()		(graph-
	tools.graphs.	MNNLandmarkGraph	method),
	16		

build_	_kernel()	(graph-
	tools.graphs.MNNLandmarkPyGSPG	Fraph
	method), 20	
build_	_kernel()	(graph-
	tools.graphs.MNNPyGSPGraph	method),
	33	
build	kernel()	(graph-
	tools.graphs.TraditionalGraph	method).
	45	
build	kernel()	(graph-
-	tools.graphs.TraditionalLandmarkGr	aph
	method). 49	-r
build	kernel()	(graph-
	tools graphs TraditionalLandmarkPv	GSPGraph
	method) 53	oor orapn
build	kernel()	(aranh-
Durra_	tools araphs Traditional PyCSPGrap	(gruph-
	66	i memou),
build	00	(anaph
bulla_		(graph-
1	loois.base.DataGraph method), 117	(l .
bulla_	_kernel_to_data()	(grapn-
	tools.graphs.kNNGraph method), 79	(1
build_	_kernel_to_data()	(graph-
	tools.graphs.kNNLandmarkGraph 82	method),
build	kernel to data()	(graph-
	tools graphs kNNL and mark PvGSPG	ranh
	method) 87	
huild	kernel to data()	(aranh-
Durra_	tools graphs kNNPvGSPGraph	(gruph) method)
	100	memou),
build	kernel to $data()$	(aranh
Durra_	tools araphs LandmarkGraph method	(grupn-
build	ioois.graphs.LanamarkOraph memoc	(anaph
bulla_	_kerner_to_uata()	(graph-
build	ioois.graphs.miniGraph method), 12	(anaph
bulla_	_Kerner_to_uata()	(graph-
		meinoa),
		(1
bulla_	_kernel_to_data()	(graph-
	tools.graphs.MININLanamarkPyGSPG	rapn
	method), 20	/ 1
build_	_kernel_to_data()	(graph-
	tools.graphs.MNNPyGSPGraph	method),
build	kernel to data()	(graph-
	tools graphs TraditionalGraph	(8. april method)
	45	memou),
build	kernel to data()	(aranh-
SULLU_	tools graphs Traditionall and mark Cr	anh
	method) 49	ирп
build	$here = \frac{1}{2}$	(aranh
putta	_Keillet_to_uata()	(grupn-
	mothed 52	osr oraph
1	memoa), 55	(1
DUIId	kernel to data()	(graph-

tools.graphs.TraditionalPyGSPGraph method), 66

- build_landmark_op() (graphtools.graphs.kNNLandmarkGraph method), 83
- build_landmark_op() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 87
- build_landmark_op() (graphtools.graphs.LandmarkGraph method), 8
- build_landmark_op() (graphtools.graphs.MNNLandmarkGraph method), 16
- build_landmark_op() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 20
- build_landmark_op() (graphtools.graphs.TraditionalLandmarkGraph method), 49
- build_landmark_op() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 54

С

```
check_between() (in module graphtools.utils), 129
check_greater() (in module graphtools.utils), 129
check_if_not() (in module graphtools.utils), 129
check_in() (in module graphtools.utils), 129
check_int() (in module graphtools.utils), 129
check_positive() (in module graphtools.utils), 129
                      (graphtools.base.PyGSPGraph
check_weights()
        method), 120
check_weights()
                                           (graph-
        tools.graphs.kNNLandmarkPyGSPGraph
        method), 87
                                          (graph-
check_weights()
        tools.graphs.kNNPyGSPGraph
                                         method),
        100
check weights()
                                           (graph-
        tools.graphs.MNNLandmarkPyGSPGraph
        method), 20
                                          (graph-
check_weights()
        tools.graphs.MNNPyGSPGraph
                                         method),
        33
check_weights()
                                           (graph-
        tools.graphs.TraditionalLandmarkPyGSPGraph
        method), 54
check_weights()
                                           (graph-
        tools.graphs.TraditionalPyGSPGraph method),
        66
clusters (graphtools.graphs.kNNLandmarkGraph at-
        tribute), 83
clusters (graphtools.graphs.kNNLandmarkPyGSPGraph
        attribute), 88
```
clusters (graphtools.graphs.LandmarkGraph a tribute), 8, 9	t- compute_laplacian() (graph- tools.graphs.kNNPyGSPGraph method),
clusters (graphtools.graphs.MNNLandmarkGrap	h 102
attribute), 16	compute_laplacian() (graph-
clusters (graphtools.graphs.MNNLandmarkPyGSPG	Graph tools.graphs.MNNLandmarkPyGSPGraph
attribute), 21	method), 22
clusters (graphtools.graphs.TraditionalLandmarkG	<pre>raphcompute_laplacian() (graph-</pre>
attribute), 49	tools.graphs.MNNPyGSPGraph method),
clusters (graphtools.graphs.TraditionalLandmarkPy	GSPGraph 35
attribute), 54	compute_laplacian() (graph-
<pre>compute_differential_operator() (graph</pre>	tools.graphs.TraditionalLandmarkPyGSPGraph
tools.base.PyGSPGraph method), 120	method), 55
<pre>compute_differential_operator() (graph</pre>	- compute_laplacian() (graph-
tools.graphs.kNNLandmarkPyGSPGraph	tools.graphs.TraditionalPyGSPGraph method),
method), 88	68
<pre>compute_differential_operator() (graph</pre>	
tools.graphs.kNNPyGSPGraph method), 101	D
<pre>compute_differential_operator() (graph</pre>	D (graphtools.base.PyGSPGraph attribute), 120
tools.graphs.MNNLandmarkPyGSPGraph	d (graphtools.base.PyGSPGraph attribute), 122
method), 21	D (graphtools.graphs.kNNLandmarkPyGSPGraph
<pre>compute_differential_operator() (graph</pre>	attribute), 86
tools.graphs.MNNPyGSPGraph method), d (graphtools.graphs.kNNLandmarkPyGSPGraph
33	attribute), 90
compute differential operator() (graph	D (graphtools.graphs.kNNPvGSPGraph attribute), 99
tools.graphs.TraditionalLandmarkPyGSPGra	oh d (graphtools.graphs.kNNPvGSPGraph attribute), 102
method), 54	D (graphtools.graphs.MNNLandmarkPvGSPGraph at-
compute differential operator() (graph	<i>tribute</i>). 20
tools.graphs.TraditionalPyGSPGraph method), d (graphtools.graphs.MNNLandmarkPvGSPGraph at-
67	tribute). 23
compute fourier basis() (grap)	D (graphtools.graphs.MNNPvGSPGraph attribute), 32
tools.base.PyGSPGraph method), 121	d (graphtools.graphs.MNNPyGSPGraph attribute), 35
compute_fourier_basis() (graph	<i>p</i> - D (graphtools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.kNNLandmarkPyGSPGraph	attribute), 53
method), 88	d (graphtools.graphs.TraditionalLandmarkPyGSPGraph
<pre>compute_fourier_basis() (graph</pre>	attribute), 56
tools.graphs.kNNPyGSPGraph method), D (graphtools.graphs.TraditionalPvGSPGraph attribute),
101	66
<pre>compute_fourier_basis() (graph</pre>	d (graphtools.graphs.TraditionalPyGSPGraph attribute),
tools.graphs.MNNLandmarkPyGSPGraph	69
method), 21	Data (class in graphtools.base), 114
<pre>compute_fourier_basis() (graph</pre>	- data (graphtools.base.Data attribute), 115
tools.graphs.MNNPyGSPGraph method), data nu (graphtools.base.Data attribute), 115
34	data pca (graphtools.base.Data attribute), 115
compute_fourier_basis() (graph	P- DataGraph (class in graphtools.base). 116
tools.graphs.TraditionalLandmarkPyGSPGra	ph dense nonzero discrete() (in module graph-
method), 55	tools.utils), 129
<pre>compute_fourier_basis() (graph</pre>	- dense set diagonal() (in module graph-
tools.graphs.TraditionalPyGSPGraph method), $tools.utils$), 130
67	diff aff (graphtools.base.BaseGraph attribute), 113
compute_laplacian() (graph	<i>P</i> - diff aff (graphtools.base.DataGraph attribute). 117
tools.base.PyGSPGraph method), 122	diff aff (graphtools.graphs.kNNGraph attribute). 79
compute_laplacian() (graph	P- diff aff (graphtools.graphs.kNNLandmarkGraph at-
tools.graphs.kNNLandmarkPyGSPGraph	tribute), 83
method), 89	· · ·

diff_	_aff (graphtools.graphs.kNNLandmarkPyGSPGrap attribute), 90	hdiv() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 23
diff_	aff (graphtools.graphs.kNNPyGSPGraph attribute), 103	div() (graphtools.graphs.MNNPyGSPGraph method), 36
diff_	aff (graphtools.graphs.LandmarkGraph at- tribute), 9	div() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 56
diff_	aff (graphtools.graphs.MNNGraph attribute), 13	div() (graphtools.graphs.TraditionalPyGSPGraph method), 69
diff_	_aff (graphtools.graphs.MNNLandmarkGraph attribute), 16	dw (graphtools.base.PyGSPGraph attribute), 123 dw (graphtools.graphs.kNNLandmarkPyGSPGraph at-
diff_	_aff (graphtools.graphs.MNNLandmarkPyGSPGra attribute), 23	ph tribute), 91 dw (graphtools.graphs.kNNPvGSPGraph attribute), 103
diff_	_aff (graphtools.graphs.MNNPyGSPGraph at- tribute), 35	dw (graphtools.graphs.MNNLandmarkPyGSPGraph at- tribute), 24
diff_	_aff (graphtools.graphs.TraditionalGraph at- tribute), 46	dw (graphtools.graphs.MNNPyGSPGraph attribute), 36 dw (graphtools.graphs.TraditionalLandmarkPyGSPGraph
diff_	aff (graphtools.graphs.TraditionalLandmarkGrap. attribute) 50	h attribute), 57 dw (graphtools graphs TraditionalPyGSPGraph at-
diff_	_aff (graphtools.graphs.TraditionalLandmarkPyGS attribute) 56	PGraph tribute), 70
diff_	_aff (graphtools.graphs.TraditionalPyGSPGraph attribute) 69	E
diff_	op (graphtools.base.BaseGraph attribute), 112, 113	e (graphtools.base.PyGSPGraph attribute), 125 e (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 91
diff_	_op (graphtools.base.DataGraph attribute), 117	e (graphtools.graphs.kNNPvGSPGraph attribute), 103
diff_	_op (graphtools.graphs.kNNGraph attribute), 79	e (graphtools.graphs.MNNLandmarkPyGSPGraph at-
diff_	_op (graphtools.graphs.kNNLandmarkGraph at-	tribute), 24
	tribute), 83	e (graphtools.graphs.MNNPyGSPGraph attribute), 36
diff_	_op (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 90	e (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 57
diff_	_op (graphtools.graphs.kNNPyGSPGraph at- tribute), 103	e (graphtools.graphs.TraditionalPyGSPGraph attribute), 70
diff_	_op (graphtools.graphs.LandmarkGraph at- tribute), 9	elementwise_maximum() (<i>in module graph-tools.utils</i>), 130
diff_	_op (graphtools.graphs.MNNGraph attribute), 13	elementwise_minimum() (in module graph-
diff_	_op (graphtools.graphs.MNNLandmarkGraph at-	tools.utils), 130
diff_	tribute), 17 _op(graphtools.graphs.MNNLandmarkPyGSPGrap	estimate_lmax() (graphtools.base.PyGSPGraph h method), 123
	attribute), 23	estimate_lmax() (graph-
diff_	_op (graphtools.graphs.MNNPyGSPGraph at- tribute), 36	tools.graphs.kNNLandmarkPyGSPGraph method), 91
diff_	_op (graphtools.graphs.TraditionalGraph at-	estimate_lmax() (graph-
	tribute), 46	tools.graphs.kNNPyGSPGraph method),
diff_	_op (graphtools.graphs.TraditionalLandmarkGraph attribute), 50	103 estimate_lmax() (graph-
diff_	_op (graphtools.graphs.TraditionalLandmarkPyGSF attribute), 56	Graph tools.graphs.MNNLandmarkPyGSPGraph method), 24
diff_	_op (graphtools.graphs.TraditionalPyGSPGraph	estimate_lmax() (graph-
	attribute), 69	tools.graphs.MNNPyGSPGraph method),
div()	(graphtools.base.PyGSPGraph method), 122	36
div()	(graphtools.graphs.kNNLandmarkPyGSPGraph	estimate_lmax() (graph-
al 4 - 7 1	method), 90	tools.graphs.TraditionalLandmarkPyGSPGraph
aıv()	(graphtools.graphs.kNNPyGSPGraph method), 103	method), 57

estima	te_lmax()	(graph-
	tools.graphs.Traditional PyGSPGraph	method),
	70	
extend	to data() (graphtools.base.De	ataGraph
	method). 117	1
extend	to data() (graphtools, graphs, k)	NNGranh
01100110	(g, up no out g,	in or up it
avtand	t_{0} data()	(araph-
excenu	tools graphs kNNL and mark Graph	(gruph-
	22	memou),
ام مد طرحه ما		(an am h
extena	_LO_UALA()	(graph-
	tools.graphs.kNNLanamarkPyGSPGra	apn
	method), 91	(I
extend	_to_data()	(graph-
	tools.graphs.kNNPyGSPGraph	method),
	104	
extend_	_to_data()	(graph-
	tools.graphs.LandmarkGraph method), 9
extend_	_to_data() (graphtools.graphs.Ml	NNGraph
	<i>method</i>), 13	
extend	_to_data()	(graph-
	tools.graphs.MNNLandmarkGraph	<i>method</i>),
	17	
extend	_to_data()	(graph-
	tools.graphs.MNNLandmarkPyGSPG	raph
	method), 24	
extend	to data()	(graph-
-	tools.graphs.MNNPvGSPGraph	method).
	37	,,
extend	to data()	(granh-
	tools graphs TraditionalGraph	method)
	46	
extend	t_{0} data()	(oranh-
encenia <u></u>	_co_aaca (7	nh
	method) 50	ipn
out ond	$\frac{1}{100}$	(an an h
excend <u></u>	uala() to ala angentes Tres dition all an des ant Du((graph-
	with a D 59	<i>sr</i> Graph
	methoa), 58	<i>(</i> 1
extend_	_to_data()	(graph-
	tools.graphs.IraditionalPyGSPGraph	method),
	/0	, 1
extrac	t_components()	(graph-
	tools.base.PyGSPGraph method), 123	
extrac	t_components()	(graph-
	tools.graphs.kNNLandmarkPyGSPGra	aph
	method), 92	
extrac	t_components()	(graph-
	tools.graphs.kNNPyGSPGraph	method),
	104	
extrac	t_components()	(graph-
	tools.graphs.MNNLandmarkPyGSPG	raph
	method), 25	
extract	t_components()	(graph-
	tools.graphs.MNNPyGSPGraph	method),
	* *	

37

- extract_components() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 58
- extract_components() (graphtools.graphs.TraditionalPyGSPGraph method), 71

F

```
from_igraph() (in module graphtools.api), 7
```

G

get_edge_lis method	st()),124	(graphtools	.base.PyG	SPGraph
get edge lis	st()			(graph-
tools.gr method	aphs.kN), 92	NLandmark	PyGSPGra	uph
get_edge_lis	st()			(graph-
tools.gr 105	aphs.kN	NPyGSPGr	лph	method),
get_edge_lis	st()			(graph-
tools.gr method	aphs.Ml), 25	NNLandmar	kPyGSPGi	raph
get_edge_lis	st()			(graph-
tools.gr 37	aphs.Ml	NNPyGSPG	raph	method),
get_edge_lis	st()			(graph-
tools.gr method	aphs.Tra), 58	aditionalLan	admarkPyC	GSPGraph
get_edge_lis	st()			(graph-
tools.gr 71	aphs.Tra	uditionalPy(<i>SSPGraph</i>	method),
get_params() 113	(graph	tools.base.B	aseGraph	method),
get_params()	(graph	tools.base.D	ata method	<i>d</i>), 115
get_params() 117	(graph	tools.base.D	ataGraph	method),
get_params() <i>method</i>), 80	(graphtool	s.graphs.kl	NNGraph
get_params()				(graph-
tools.gr 84	aphs.kN	NLandmark	Graph	method),
get_params()				(graph-
tools.gr method	aphs.kN), 92	NLandmark	PyGSPGra	aph
get_params() <i>method</i>	(graph), 105	ntools.graph	s.kNNPyG	SPGraph
get_params() <i>method</i>	(grap), 9	phtools.grap	hs.Landma	arkGraph
get_params() <i>method</i>), 13	(graphtools.	graphs.Ml	NNGraph
get_params()				(graph-
tools.gr 17	aphs.Ml	NNLandmar	kGraph	method),

get_p	params()	(graph-
	tools.graphs.MNNL and markPyGSPGrades to the second state of the	ıph
	method), 25	
get_p	<pre>params() (graphtools.graphs.MNNPyGS method), 38</pre>	PGraph
get_p	params() (graphtools.graphs.Tradition method) 46	alGraph
qet p	params()	(graph-
5 —	tools.graphs.TraditionalLandmarkGrap method), 50	oh
get_p	params()	(graph-
	tools.graphs.TraditionalLandmarkPyG method), 59	SPGraph
aet p	params()	(graph-
<u> </u>	tools.graphs.TraditionalPyGSPGraph 1	nethod),
aft ()	(araphtools base PvGSPGraph method)	124
gft() gft()	(graphtools.graphs.kNNLandmarkPyGS method), 92	PGraph
gft()	(graphtools.graphs.kNNPyGSPGraph 1 105	nethod),
gft()	(graphtools.graphs.MNNLandmarkPyGS method) 25	PGraph
gft()	(graphtools.graphs.MNNPyGSPGraph 1	nethod),
gft()	(graphtools.graphs.TraditionalLandmark method), 59	PyGSPGr
gft()	(graphtools.graphs.TraditionalPyGS method), 71	PGraph
gft_w	vindowed() (graphtools.base.PyGS	PGraph
-	method), 125	ŕ
gft_w	indowed()	(graph-
	tools.graphs.kNNLandmarkPyGSPGraj method), 93	ph
gft_w	indowed()	(graph-
	tools.graphs.kNNPyGSPGraph 105	nethod),
gft_w	vindowed()	(graph-
	tools.graphs.MNNLandmarkPyGSPGra	aph
_	method), 26	<i>,</i> ,
gft_w	vindowed()	(graph-
	tools.graphs.MNNPyGSPGraph 1 38	nethod),
gft_w	vindowed()	(graph-
	tools.graphs.TraditionalLandmarkPyG. method), 59	SPGraph
gft_w	vindowed()	(graph-
	tools.graphs.TraditionalPyGSPGraph 1 72	nethod),
gft_w	indowed_gabor()	(graph-
_	tools.base.PyGSPGraph method), 125	~~ *
gft_w	indowed_gabor()	(graph-
	tools.graphs.kNNLandmarkPyGSPGrap method), 93	ph
	· ·	

gft_wi	ndowed_gabor()	(graph-
	tools.graphs.kNNPyGSPGraph 106	method),
gft_wi	.ndowed_gabor()	(graph-
	tools.graphs.MNNLandmarkPyGSI method), 26	PGraph
aft wi	ndowed gabor()	(graph-
9-0	tools.graphs.MNNPyGSPGraph 38	method),
gft_wi	ndowed_gabor()	(graph-
	tools.graphs.TraditionalLandmark. method), 59	PyGSPGraph
gft_wi	ndowed_gabor()	(graph-
-	tools.graphs.TraditionalPyGSPGra	uph method),
gft_wi	<pre>.ndowed_normalized() tools.base.PyGSPGraph method),</pre>	(graph- 125
gft_wi	.ndowed_normalized()	(graph-
-	tools.graphs.kNNLandmarkPyGSP method), 93	Graph
gft_wi	.ndowed_normalized()	(graph-
	tools.graphs.kNNPyGSPGraph 106	method),
gft_wi	.ndowed_normalized()	(graph-
raph	tools.graphs.MNNLandmarkPyGSI method), 26	PGraph
	.ndowed_normalized()	(graph-
	tools.graphs.MNNPyGSPGraph 39	method),
gft_wi	ndowed_normalized()	(graph-
	tools.graphs.TraditionalLandmark. method), 60	PyGSPGraph
gft_wi	.ndowed_normalized()	(graph-
	tools.graphs.TraditionalPyGSPGra 72	aph method),
grad()	(graphtools.base.PyGSPGraph met	hod), 125
grad()	(graphtools.graphs.kNNLandmarkH method), 93	PyGSPGraph
grad()	(graphtools.graphs.kNNPyGSPGra 106	ph method),
grad()	(graphtools.graphs.MNNLandmark method), 26	PyGSPGraph
grad()	(graphtools.graphs.MNNF method), 39	PyGSPGraph
grad()	(graphtools.graphs.TraditionalLand method), 60	dmarkPyGSPGraph
grad()	(graphtools.graphs.TraditionalF method), 72	PyGSPGraph
Graph(() (in module graphtools.api), 5	
grapht	cools.api(module),5	
grapht	cools.base(<i>module</i>),112	
grapht	cools.graphs(<i>module</i>),7	
grapht	cools.utils(<i>module</i>), 129	

1	method), 115
if sparse() (in module graphtools utils), 130	inverse_transform() (graph-
igft () (graphtools.base.PyGSPGraph method), 126	tools.base.DataGraph method), 118
<pre>igft() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 94</pre>	<pre>inverse_transform() (graph- tools.graphs.kNNGraph method), 80</pre>
<pre>igft() (graphtools.graphs.kNNPyGSPGraph method),</pre>	<pre>inverse_transform() (graph- tools.graphs.kNNLandmarkGraph method),</pre>
igft()(graphtools.graphs.MNNLandmarkPyGSPGraph	84
method), 27	<pre>inverse_transform() (graph-</pre>
<pre>igft() (graphtools.graphs.MNNPyGSPGraph method), 39</pre>	tools.graphs.kNNLandmarkPyGSPGraph method), 95
<pre>igft() (graphtools.graphs.TraditionalLandmarkPyGSPC method), 60</pre>	Grapherse_transform() (graph- tools.graphs.kNNPyGSPGraph method),
igft() (graphtools.graphs.TraditionalPyGSPGraph method) 73	107 inverse transform() (graph-
interpolate() (graphtools.base.DataGraph	tools.graphs.LandmarkGraph method), 10
method), 117	inverse_transform() (graph-
<pre>interpolate() (graphtools.graphs.kNNGraph</pre>	tools.graphs.MNNGraph method), 14
method), 80	inverse_transform() (graph-
interpolate() (graph-	tools.graphs.MNNLandmarkGraph method),
tools.graphs.kNNLandmarkGraph method),	inverse transform() (aranh-
84	tools.graphs.MNNLandmarkPvGSPGraph
tools graphs kNNL andmarkPvGSPGraph	method), 28
method) 94	<pre>inverse_transform() (graph-</pre>
interpolate() (graph-	tools.graphs.MNNPyGSPGraph method),
tools.graphs.kNNPyGSPGraph method),	40
107	<pre>inverse_transform() (graph-</pre>
<pre>interpolate() (graphtools.graphs.LandmarkGraph</pre>	tools.graphs.TraditionalGraph method), 47
<pre>interpolate() (graphtools.graphs.MNNGraph</pre>	inverse_transform() (graph-
<i>method</i>), 13	tools.graphs.IraditionalLandmarkGraph
interpolate() (graph-	inverse transform() (granh-
tools.graphs.MNNLandmarkGraph method), 17	tools.graphs.TraditionalLandmarkPyGSPGraph method) 61
interpolate() (graph-	inverse transform() (graph-
method), 27	tools.graphs.TraditionalPyGSPGraph method), 74
interpolate() (graph-	is Anndata() (in module graphtools.utils), 130
40	is_connected() (graphtools.base.PyGSPGraph
interpolate() (graph-	method), 120
tools.graphs.TraditionalGraph method),	tools graphs kNNL and markPvGSPGraph
40	method). 95
tools graphs TraditionalLandmarkGraph	is_connected() (graph-
method), 50	tools.graphs.kNNPyGSPGraph method),
interpolate() (graph-	108
tools.graphs.TraditionalLandmarkPyGSPGraph	is_connected() (graph-
method), 61	tools.graphs.MNNLandmarkPyGSPGraph
interpolate() (graph-	method), 28
interpolate() (graph- tools.graphs.TraditionalPyGSPGraph method),	method), 28 is_connected() (graph- tools graphs MNNPvGSPGraph method)
interpolate() (graph- tools.graphs.TraditionalPyGSPGraph method), 73	<pre>method), 28 is_connected() (graph- tools.graphs.MNNPyGSPGraph method), 40</pre>

is_connected()	(graph-
tools.graphs.TraditionalLand	markPyGSPGraph
<i>method</i>), 61	
is_connected()	(graph-
tools.graphs.TraditionalPyGS 74	PGraph method),
is DataFrame() (in module grapht	ools.utils), 130
is directed() (graphtools.b	ase.PyGSPGraph
<i>method</i>), 127	<i>v</i> 1
is_directed()	(graph-
tools.graphs.kNNLandmarkPy	yGSPGraph
method), 95	ŕ
is_directed()	(graph-
tools.graphs.kNNPyGSPGrap	h method),
108	
is_directed()	(graph-
tools.graphs.MNNLandmarkH	PyGSPGraph
method), 28	
is_directed()	(graph-
tools.graphs.MNNPyGSPGra	ph method),
is_directed()	(graph-
tools.graphs.TraditionalLands	markPyGSPGraph
is directed()	(granh-
tools graphs TraditionalPvGS	(graph PGraph method)
74	i Graph memou),
is_SparseDataFrame() (<i>in</i>	module graph-
tools.utils), 130	

Κ

K (graphtools.base.BaseGraph attribute), 112
K (graphtools.base.DataGraph attribute), 116
K (graphtools.base.PyGSPGraph attribute), 120
K (graphtools.graphs.kNNGraph attribute), 78
K (graphtools.graphs.kNNLandmarkGraph attribute), 82
K (graphtools.graphs.kNNLandmarkPyGSPGraph
attribute), 86
K (graphtools.graphs.kNNPyGSPGraph attribute), 99
K (graphtools.graphs.LandmarkGraph attribute), 8
K (graphtools.graphs.MNNGraph attribute), 12
K (graphtools.graphs.MNNLandmarkGraph attribute), 15
K (graphtools.graphs.MNNLandmarkPyGSPGraph at-
tribute), 20
K (graphtools.graphs.MNNPyGSPGraph attribute), 32
K (graphtools.graphs.TraditionalGraph attribute), 45
K (graphtools.graphs.TraditionalLandmarkGraph at-
tribute), 49
K (graphtools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 53
K (graphtools.graphs.TraditionalPyGSPGraph attribute),
66
kernel (graphtools.base.BaseGraph attribute), 112,
113

-	kernel	(graphtools.base.DataGraph attribute)), 118	
h	kernel	(graphtools.graphs.kNNGraph attribut	te), 80	
_	kernel	(graphtools.graphs.kNNLandma attribute), 84	arkGra	ph
,	kernel	(graphtools.graphs.kNNLandmarkPyG attribute), 96	SPGra	ıph
,	kernel	(graphtools.graphs.kNNPyGSPGra tribute) 109	ph	at-
-	kernel	(graphtools.graphs.LandmarkGraph a	attribut	e),
-	kornol	(graphtools graphs MNNGraph attribu	11e) 14	L
_	kernel	(graphtools.graphs.MNNLandmarkG tribute) 18	raph	at-
,	kernel	(graphtools.graphs.MNNLandmarkPy attribute) 29	GSPGr	aph
-	kernel	(graphtools.graphs.MNNPyGSPGra tribute) 41	aph	at-
_	kernel	(graphtools.graphs.TraditionalGraph o 47	attribut	e),
,	kernel	(graphtools.graphs.TraditionalLandma attribute), 51	arkGra	ph
h	kernel	(graphtools.graphs.TraditionalLandme attribute), 62	arkPyG	GSPGraph
-	kernel	(graphtools.graphs.TraditionalPyGSP) tribute) 75	Graph	at-
,	kernel	_degree (graphtools.base.BaseGra	aph	at-
-	kernel	_degree (graphtools.base.DataGra	aph	at-
	kernel	_degree (graphtools.graphs.kNNG tribute), 80	raph	at-
	kernel	_degree	(graf	oh-
		tools.graphs.kNNLandmarkGraph a 84	attribut	e),
	kernel	_degree	(graf	ph-
ı		tools.graphs.kNNLandmarkPyGSPGrattribute), 96	aph	
	kernel	_degree	(graț	oh-
		tools.graphs.kNNPyGSPGraph 0 109	attribut	e),
5	kernel	_degree (graphtools.graphs.Landma attribute), 10	arkGra	ph
-	kernel	_degree (graphtools.graphs.MNNG tribute), 14	raph	at-
	kernel	_degree	(grap	ph-
		tools.graphs.MNNLandmarkGraph	attribut	e),
-	kernel	degree	(orai	oh-
ı		tools.graphs.MNNLandmarkPyGSPG attribute), 29	raph	
	kernel	degree	(grai	oh-
,		tools.graphs.MNNPyGSPGraph	attribut	e),

41 kernel_degree

(graph-

tools.graphs.TraditionalGraph attribute). 47 kernel degree (graphtools.graphs.TraditionalLandmarkGraph attribute), 51 kernel degree (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62 kernel degree (graphtools.graphs.TraditionalPyGSPGraph attribute), 75 knn_tree (graphtools.graphs.kNNGraph attribute), 78, 80 knn_tree (graphtools.graphs.kNNLandmarkGraph attribute), 84 knn_tree(graphtools.graphs.kNNLandmarkPyGSPGraphmodulate() (graphtools.base.PyGSPGraph method), attribute), 96 knn_tree (graphtools.graphs.kNNPyGSPGraph attribute), 109 kNNGraph (*class in graphtools.graphs*), 78 kNNLandmarkGraph (class in graphtools.graphs), 82 kNNLandmarkPyGSPGraph (class graphin tools.graphs), 86 kNNPyGSPGraph (class in graphtools.graphs), 99

L

landmark_op (graphtools.graphs.kNNLandmarkGraph attribute). 85 landmark_op (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 96 landmark op (graphtools.graphs.LandmarkGraph attribute), 7, 10 landmark op (graphtools.graphs.MNNLandmarkGraph attribute), 18 landmark_op (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 29 (graphlandmark_op tools.graphs.TraditionalLandmarkGraph attribute), 51 landmark_op (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62 LandmarkGraph (class in graphtools.graphs), 7 lmax (graphtools.base.PyGSPGraph attribute), 127 (graphtools.graphs.kNNLandmarkPyGSPGraph lmax attribute), 96 lmax (graphtools.graphs.kNNPyGSPGraph attribute), 109 lmax (graphtools.graphs.MNNLandmarkPyGSPGraph

lmax (graphtools.graphs.MNNPyGSPGraph attribute), 41 lmax(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62 lmax (graphtools.graphs.TraditionalPyGSPGraph attribute), 75

Μ

matrix_is_equivalent() (in module graphtools.utils), 130 MNNGraph (class in graphtools.graphs), 12 MNNLandmarkGraph (class in graphtools.graphs), 15 MNNLandmarkPyGSPGraph (class in graphtools.graphs), 19 MNNPyGSPGraph (class in graphtools.graphs), 32 127 modulate() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 96 (graphtools.graphs.kNNPyGSPGraph modulate() method), 109 modulate() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 29 modulate() (graphtools.graphs.MNNPyGSPGraph method), 41 modulate() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 63 modulate() (graphtools.graphs.TraditionalPyGSPGraph method), 75 mu (graphtools.base.PyGSPGraph attribute), 128 mu (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 97 mu (graphtools.graphs.kNNPyGSPGraph attribute), 109 mu (graphtools.graphs.MNNLandmarkPvGSPGraph attribute), 29 mu (graphtools.graphs.MNNPyGSPGraph attribute), 42 mu (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 63 mu (graphtools.graphs.TraditionalPyGSPGraph attribute), 75 Ν

n_pca (graphtools.base.Data attribute), 115 nonzero_discrete() (in module graphtools.utils), 130

Ρ

P (graphtools.base.BaseGraph attribute), 112

P (graphtools.base.DataGraph attribute), 116

P (graphtools.graphs.kNNGraph attribute), 78

P (graphtools.graphs.kNNLandmarkGraph attribute), 82 (graphtools.graphs.kNNLandmarkPyGSPGraph Ρ attribute), 86

P (graphtools.graphs.kNNPyGSPGraph attribute), 99

attribute), 29

P (graphtools.graphs.LandmarkGraph attribute), 8 P (graphtools.graphs.MNNGraph attribute), 12 P (graphtools.graphs.MNNLandmarkGraph attribute), 16 (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 20 P (graphtools.graphs.MNNPyGSPGraph attribute), 32 P (graphtools.graphs.TraditionalGraph attribute), 45 (graphtools.graphs.TraditionalLandmarkGraph at-Ρ tribute), 49 P (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 53 P (graphtools.graphs.TraditionalPyGSPGraph attribute), 66 plot () (graphtools.base.PyGSPGraph method), 128 plot() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97 plot() (graphtools.graphs.kNNPyGSPGraph method), 109 plot() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 29 plot() (graphtools.graphs.MNNPyGSPGraph method), 42 plot() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 63 (graphtools.graphs.TraditionalPyGSPGraph plot() method), 75 plot_signal() (graphtools.base.PyGSPGraph method), 128 plot_signal() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97 plot_signal() (graphtools.graphs.kNNPyGSPGraph method), 109 plot_signal() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 30 plot_signal() (graphtools.graphs.MNNPyGSPGraph method), 42 plot_signal() (graphtools.graphs.TraditionalLandmarkPyGSPGraph*method*), 63plot_signal() (graphtools.graphs.TraditionalPyGSPGraph method), 75 plot_spectrogram() (graphtools.base.PyGSPGraph method), 128 plot_spectrogram() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97 plot_spectrogram() (graphtools.graphs.kNNPyGSPGraph method), 109

<pre>plot_spectrogram()</pre>	(graph-
tools.graphs.MNNLandmar	rkPyGSPGraph
<i>method</i>), 30	

(graphplot_spectrogram() tools.graphs.MNNPyGSPGraph method), 42

- plot_spectrogram() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 63
- plot_spectrogram() (graphtools.graphs.TraditionalPyGSPGraph method), 76

PyGSPGraph (class in graphtools.base), 120

R

S

set_coordinates() (graphtools.base.PyGSPGraph method), 128 set_coordinates() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97 set coordinates() (graphtools.graphs.kNNPyGSPGraph method), 110 set_coordinates() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 30 set_coordinates() (graphtools.graphs.MNNPyGSPGraph method), 42 set_coordinates() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 63 set_coordinates() (graphtools.graphs.TraditionalPyGSPGraph method), 76 set_diagonal() (in module graphtools.utils), 130 set_params() (graphtools.base.Base method), 112 set_params() (graphtools.base.BaseGraph method), 113 set_params() (graphtools.base.Data method), 115 set_params() (graphtools.base.DataGraph method), 118 (graphtools.base.PyGSPGraph set_params() method), 128 (graphtools.graphs.kNNGraph set_params() method), 81 set_params() (graphtools.graphs.kNNLandmarkGraph method), 85 (graphset_params() tools.graphs.kNNLandmarkPyGSPGraph

read_pickle() (in module graphtools.api), 7

method), 97 set_params() (graphtools.graphs.kNNPyGSPGraph s *method*), 110 (graphtools.graphs.LandmarkGraph set_params() method), 10 (graphtools.graphs.MNNGraph set params() method), 14 set_params() (graphtools.graphs.MNNLandmarkGraph method), 18 set_params() (graph-5 tools.graphs.MNNLandmarkPyGSPGraph method), 30 set_params() (graphtools.graphs.MNNPyGSPGraph method), 42 set_params() (graphtools.graphs.TraditionalGraph method), 47 set_params() (graphtools.graphs.TraditionalLandmarkGraph method), 51 set_params() (graphtools.graphs.TraditionalLandmarkPyGSPGraph s method), 63 set_params() (graphtools.graphs.TraditionalPyGSPGraph method), 76 set_submatrix() (in module graphtools.utils), 130 (graphtools.base.BaseGraph shortest_path() method), 113 shortest_path() (graphtools.base.DataGraph s method), 119 shortest_path() (graphtools.graphs.kNNGraph s method), 81 shortest_path() (graphtools.graphs.kNNLandmarkGraph method), 85 shortest_path() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97 shortest_path() (graphtools.graphs.kNNPyGSPGraph method), 110 shortest_path() (graphtools.graphs.LandmarkGraph method), 10 (graphtools.graphs.MNNGraph shortest_path() method), 14 shortest_path() (graphtools.graphs.MNNLandmarkGraph *method*), 18 shortest_path() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 30 shortest_path() (graphtools.graphs.MNNPyGSPGraph method),

43

<pre>shortest_path()</pre>	(graph-
tools.graphs.Traditional Graph	method),
47	<i>,</i> ,
<pre>shortest_path()</pre>	(graph-
tools.graphs.IraditionalLandmarkG	raph
method), 51	(] .
shortest_path()	(grapn-
method) 64	yGSPGraph
shortest path()	(graph-
tools.graphs.TraditionalPyGSPGrap	h method),
() (in module graphtools	utile) 130
sparse_minim() (in module graphicols	<i>utils</i>), 130
sparse nonzero discrete() (in module sparse)	lule graph-
tools.utils), 130	and graph
<pre>sparse_set_diagonal() (in modul tools.utils).130</pre>	le graph-
subgraph () (graphtools.base.PyGSPGraph	h method),
128	ankDyCSDCnaph
method), 98	arkPyGSPGrapn
<pre>subgraph() (graphtools.graphs.kNNPy method), 110</pre>	GSPGraph
<pre>subgraph() (graphtools.graphs.MNNLandr method), 31</pre>	narkPyGSPGraph
<pre>subgraph() (graphtools.graphs.MNNPy</pre>	GSPGraph
method), 43	1
<pre>subgraph() (graphtools.graphs.Traditional</pre>	LandmarkPyGSPGraph
method), 64	
<pre>subgraph() (graphtools.graphs.Traditional</pre>	PyGSPGraph
subgraphs (graphtools.graphs.MNNGraph	attribute),
12	
symmetrize_kernel()	(graph-
tools.base.BaseGraph method), 114	
<pre>symmetrize_kernel()</pre>	(graph-
tools.base.DataGraph method), 119	(1
symmetrize_kernel()	(graph-
tools.graphs.kNNGraph method), 81	(1
symmetrize_kernel()	(graph-
toois.graphs.kivivLanamarkGraph 85	metnoa),
oj symmetrize kernel()	(aranh-
tools graphs kNNI andmarkPvGSPG	(grupn- Eranh
method) 98	парн
symmetrize kernel()	(graph-
tools.graphs.kNNPvGSPGraph	method).
111	,,
symmetrize_kernel()	(graph-
tools.graphs.LandmarkGraph metho	d), 11
symmetrize_kernel()	(graph-
tools.graphs.MNNGraph method), 1	5

symmetrize_kernel()	(graph-
tools.graphs.MNNLandmarkGraph 18	method),
symmetrize_kernel()	(graph-
tools.graphs.MNNLandmarkPyGSP0	Graph
<i>method</i>), 31	
symmetrize_kernel()	(graph-
tools.graphs.MNNPyGSPGraph	method),
43	
symmetrize_kernel()	(graph-
tools.graphs.TraditionalGraph	method),
48	
symmetrize_kernel()	(graph-
tools.graphs.TraditionalLandmarkGraphicstress for the second state of the second sta	raph
method), 52	
symmetrize_kernel()	(graph-
tools.graphs.TraditionalLandmarkPy	GSPGraph
method), 64	
symmetrize_kernel()	(graph-
tools.graphs.TraditionalPyGSPGrap 77	h method),

Т

to_array() (in module graphtools.utils), 130 to_igraph() (graphtools.base.BaseGraph method), 114 to_igraph() (graphtools.base.DataGraph method), 119 to_igraph() (graphtools.graphs.kNNGraph method), 81 to_igraph() (graphtools.graphs.kNNLandmarkGraph *method*), 85 to_igraph() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 98 (graphtools.graphs.kNNPyGSPGraph to_igraph() method), 111 (graphtools.graphs.LandmarkGraph to_igraph() method), 11 to_igraph() (graphtools.graphs.MNNGraph method), 15 (graphto_igraph() tools.graphs.MNNLandmarkGraph method), 18 to_igraph() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 31 to_igraph() (graphtools.graphs.MNNPyGSPGraph method), 43 to_igraph() (graphtools.graphs.TraditionalGraph method), 48 to_igraph() (graphtools.graphs.TraditionalLandmarkGraph

method), 52 (graphto_igraph() tools.graphs.TraditionalLandmarkPyGSPGraph method), 64 to_igraph() (graphtools.graphs.TraditionalPyGSPGraph method), 77 to_pickle() (graphtools.base.BaseGraph method), 114 to_pickle() (graphtools.base.DataGraph method), 119 to_pickle() (graphtools.graphs.kNNGraph method), 81 to_pickle() (graphtools.graphs.kNNLandmarkGraph method), 85 to_pickle() (graphtools.graphs.kNNLandmarkPvGSPGraph method), 98 to pickle() (graphtools.graphs.kNNPyGSPGraph method), 111 (graphtools.graphs.LandmarkGraph to pickle() method), 11 (graphtools.graphs.MNNGraph to pickle() method), 15 (graphto_pickle() tools.graphs.MNNLandmarkGraph method), 19 (graphto_pickle() tools.graphs.MNNLandmarkPyGSPGraph method), 31 to_pickle() (graphtools.graphs.MNNPyGSPGraph method), 43 (graphtools.graphs.TraditionalGraph to_pickle() method), 48 to_pickle() (graphtools.graphs.TraditionalLandmarkGraph method), 52 (graphto_pickle() tools.graphs.TraditionalLandmarkPyGSPGraph method), 65 to pickle() (graphtools.graphs.TraditionalPyGSPGraph method), 77 to_pygsp() (graphtools.base.BaseGraph method), 114 to_pygsp() (graphtools.base.DataGraph method), 119 to_pygsp() (graphtools.graphs.kNNGraph method), 81 to_pygsp() (graphtools.graphs.kNNLandmarkGraph method), 86 to_pygsp() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 98

to_pygsp() (graphtools.graphs.kNNPyGSPGraph method), 111	<pre>transform() (graph- tools.graphs.TraditionalLandmarkGraph</pre>
to_pygsp() (graphtools.graphs.LandmarkGraph	method), 52
to_pygsp() (graphtools.graphs.MNNGraph method), 15	tools.graphs.TraditionalLandmarkPyGSPGraph method), 65
to_pygsp() (graphtools.graphs.MNNLandmarkGraph	transform() (graph-
<pre>method), 19 to_pygsp() (graphtools.graphs.MNNLandmarkPyGSPC)</pre>	tools.graphs.TraditionalPyGSPGraph method), Graph 77
method), 31	transitions (graph-
<i>method</i>), 43	86
to_pygsp() (graphtools.graphs.TraditionalGraph	transitions (graph-
method), 48	tools.graphs.kNNLandmarkPyGSPGraph
to_pygsp() (graphiools.graphs.IraditionalLandmarkG method) 52	transitions (graphtools graphs LandmarkGraph at-
to_pygsp() (graphtools.graphs.TraditionalLandmarkPy	(GSPGraphribute), 7, 11
method), 65	transitions (graph-
to_pygsp() (graphtools.graphs.TraditionalPyGSPGrap method), 77	h tools.graphs.MNNLandmarkGraph attribute), 19
TraditionalGraph (<i>class in graphtools.graphs</i>), 44	transitions (graph-
tools.graphs), 48	attribute), 32
TraditionalLandmarkPyGSPGraph (class in	transitions (graph-
graphtools.graphs), 53	tools.graphs.TraditionalLandmarkGraph
TraditionalPyGSPGraph (class in graph-	attribute), 52
transform() (graphtools.base.Data method), 116	tools.graphs.TraditionalLandmarkPyGSPGraph
transform() (graphtools.base.DataGraph method),	attribute), 65
119 transform() (graphtools graphs kNNGraph method)	(graphiools.base.PyGSPGraph method) 128
82	translate() (graph-
transform() (graph-	tools.graphs.kNNLandmarkPyGSPGraph
tools.graphs.kNNLandmarkGraph method),	method), 99 translate() (graphtools graphs kNNPvGSPGraph
transform() (graph-	method), 111
tools.graphs.kNNLandmarkPyGSPGraph	translate() (graph-
method), 99	tools.graphs.MNNLandmarkPyGSPGraph
transform() (graphtools.graphs.kNNPyGSPGraph method) 111	method), 32
transform() (graphtools.graphs.LandmarkGraph	method), 44
method), 11	translate() (graph-
<pre>transform() (graphtools.graphs.MNNGraph method), 15</pre>	tools.graphs.TraditionalLandmarkPyGSPGraph method), 65
transform() (graph-	translate() (graph-
tools.graphs.MNNLandmarkGraph method), 19	tools.graphs.TraditionalPyGSPGraph method), 78
transform() (graph-	11
tools.graphs.MNNLandmarkPyGSPGraph	U
method), 31	U (graphtools.base.PyGSPGraph attribute), 120
<i>method</i>), 44	o (graphioois.graphs.kivinLandmarkPyGSPGraph attribute), 87
<pre>transform() (graphtools.graphs.TraditionalGraph</pre>	U (graphtools.graphs.kNNPyGSPGraph attribute), 100

- U (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 20
- U (graphtools.graphs.MNNPyGSPGraph attribute), 32
- U (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 53
- U (graphtools.graphs.TraditionalPyGSPGraph attribute), 66

W

- weighted (graphtools.base.BaseGraph attribute), 114
- weighted (graphtools.base.DataGraph attribute), 120
- weighted (graphtools.graphs.kNNGraph attribute), 82
- weighted (graphtools.graphs.kNNLandmarkGraph attribute), 86

- weighted (graphtools.graphs.LandmarkGraph attribute), 12
- weighted (graphtools.graphs.MNNGraph attribute), 15

weighted (graphtools.graphs.MNNPyGSPGraph attribute), 44

- weighted (graphtools.graphs.TraditionalGraph attribute), 48
- weighted (graphtools.graphs.TraditionalLandmarkGraph attribute), 53
- weighted (graphtools.graphs.TraditionalPyGSPGraph attribute), 78