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Tools for building and manipulating graphs in Python.
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CHAPTER 1

Installation

1.1 Installation with pip

Install graphtools using:

pip install --user graphtools

1.2 Installation from source

Install from source using:

git clone git://github.com/KrishnaswamyLab/graphtools.git
cd graphtools
python setup.py install --user
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CHAPTER 2

Reference

2.1 API

graphtools.api.Graph(data, n_pca=None, rank_threshold=None, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0, knn_max=None, anisotropy=0,
distance=’euclidean’, thresh=0.0001, kernel_symm=’+’, theta=None,
precomputed=None, beta=1, sample_idx=None, adaptive_k=None,
n_landmark=None, n_svd=100, n_jobs=-1, verbose=False, ran-
dom_state=None, graphtype=’auto’, use_pygsp=False, initialize=True,
**kwargs)

Create a graph built on data.

Automatically selects the appropriate DataGraph subclass based on chosen parameters. Selection criteria: - if
graphtype is given, this will be respected - otherwise: – if sample_idx is given, an MNNGraph will be created –
if precomputed is not given, and either decay is None or thresh is given, a kNNGraph will be created - otherwise,
a TraditionalGraph will be created.

Incompatibilities: - MNNGraph and kNNGraph cannot be precomputed - kNNGraph and TraditionalGraph do
not accept sample indices

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix. TODO: accept pandas dataframes’

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None, False, 0], uses the original data. If ‘auto’ or
True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead
of PCA TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. If ‘auto’, this threshold is s_max * eps *
max(n_samples, n_features) where s_max is the maximum singular value of the data matrix
and eps is numerical precision. [press2007].
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• knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to
build the graph

• decay (int or None, optional (default: 40)) – Rate of alpha decay to use. If None, alpha
decay is not used and a vanilla k-Nearest Neighbors graph is returned.

• bandwidth (float, list-like,‘callable‘, or None, optional (default: None)) – Fixed
bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like
(shape=[n_samples]) of bandwidths for each sample, or a callable that takes in an n x n
distance matrix and returns a a single value or list-like of length n (shape=[n_samples])

• bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

• knn_max (int or None, optional (default : None)) – Maximum number of neighbors with
nonzero affinity

• anisotropy (float, optional (default: 0)) – Level of anisotropy between
0 and 1 (alpha in Coifman & Lafon, 2006)

• distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance
can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has
even more choices

• thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay
kernel. All affinities below thresh will be set to zero in order to save on time and memory
constraints.

• kernel_symm (string, optional (default: '+')) – Defines method of
kernel symmetrization. ‘+’ : additive ‘*’ : multiplicative ‘mnn’ : min-max MNN sym-
metrization ‘none’ : no symmetrization

• theta (float (default: None)) – Min-max symmetrization constant or matrix.
Only used if kernel_symm=’mnn’. K = theta * min(K, K.T) + (1 - theta) * max(K, K.T)

• precomputed ({‘distance’, ‘affinity’, ‘adjacency’, None}, optional (default: None)) – If
the graph is precomputed, this variable denotes which graph matrix is provided as data.
Only one of precomputed and n_pca can be set.

• beta (float, optional(default: 1)) – Multiply between - batch connections
by beta

• sample_idx (array-like) – Batch index for MNN kernel

• adaptive_k ({‘min’, ‘mean’, ‘sqrt’, ‘none’} (default: None)) – Weights MNN kernel
adaptively using the number of cells in each sample according to the selected method.

• n_landmark (int, optional (default: 2000)) – number of landmarks to use

• n_svd (int, optional (default: 100)) – number of SVD components to use for spectral
clustering

• random_state (int or None, optional (default: None)) – Random state for random PCA

• verbose (bool, optional (default: True)) – Verbosity. TODO: should this be an integer
instead to allow multiple levels of verbosity?

• n_jobs (int, optional (default : 1)) – The number of jobs to use for the computation. If -1
all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful
for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2,
all CPUs but one are used

• graphtype ({'exact', 'knn', 'mnn', 'auto'} (Default: 'auto'))
– Manually selects graph type. Only recommended for expert users

6 Chapter 2. Reference
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• use_pygsp (bool (Default: False)) – If true, inherits from pygsp.graphs.Graph.

• initialize (bool (Default: True)) – If True, initialize the kernel matrix on instantiation

• **kwargs (extra arguments for pygsp.graphs.Graph) –

Returns G

Return type DataGraph

Raises ValueError : if selected parameters are incompatible.

References

graphtools.api.from_igraph(G, attribute=’weight’, **kwargs)
Convert an igraph.Graph to a graphtools.Graph

Creates a graphtools.graphs.TraditionalGraph with a precomputed adjacency matrix

Parameters

• G (igraph.Graph) – Graph to be converted

• attribute (str, optional (default: "weight")) – attribute containing
edge weights, if any. If None, unweighted graph is built

• kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.graphs.TraditionalGraph

graphtools.api.read_pickle(path)
Load pickled Graphtools object (or any object) from file.

Parameters path (str) – File path where the pickled object will be loaded.

2.2 Graph Classes

class graphtools.graphs.LandmarkGraph(data, n_landmark=2000, n_svd=100, **kwargs)
Bases: graphtools.base.DataGraph

Landmark graph

Adds landmarking feature to any data graph by taking spectral clusters and building a ‘landmark operator’ from
clusters to samples and back to clusters. Any transformation on the landmark kernel is trivially extended to the
data space by multiplying by the transition matrix.

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix., pandas.DataFrame, pandas.SparseDataFrame.

• n_landmark (int, optional (default: 2000)) – number of landmarks to use

• n_svd (int, optional (default: 100)) – number of SVD components to use for spectral
clustering

landmark_op
Landmark operator. Can be treated as a diffusion operator between landmarks.

Type array-like, shape=[n_landmark, n_landmark]

2.2. Graph Classes 7
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transitions
Transition probabilities between samples and landmarks.

Type array-like, shape=[n_samples, n_landmark]

clusters
Private attribute. Cluster assignments for each sample.

Type array-like, shape=[n_samples]

Examples

>>> G = graphtools.Graph(data, n_landmark=1000)
>>> X_landmark = transform(G.landmark_op)
>>> X_full = G.interpolate(X_landmark)

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y)
Build a kernel from new input data Y to the self.data

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises

• ValueError: if this Graph is not capable of extension or

• if the supplied data is the wrong shape

build_landmark_op()
Build the landmark operator

8 Chapter 2. Reference
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Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

2.2. Graph Classes 9
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Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: - n_landmark - n_svd

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]
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• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

2.2. Graph Classes 11
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Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.MNNGraph(data, sample_idx, knn=5, beta=1, n_pca=None, de-
cay=None, adaptive_k=None, bandwidth=None, dis-
tance=’euclidean’, thresh=0.0001, n_jobs=1, **kwargs)

Bases: graphtools.base.DataGraph

Mutual nearest neighbors graph

Performs batch correction by forcing connections between batches, but only when the connection is mutual (i.e.
x is a neighbor of y _and_ y is a neighbor of x).

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.

• sample_idx (array-like, shape=[n_samples]) – Batch index

• beta (float, optional (default: 1)) – Downweight between-batch affinities by beta

• adaptive_k ({‘min’, ‘mean’, ‘sqrt’, None} (default: None)) – Weights MNN kernel
adaptively using the number of cells in each sample according to the selected method.

subgraphs
Graphs representing each batch separately

Type list of graphtools.graphs.kNNGraph

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

12 Chapter 2. Reference
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Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

2.2. Graph Classes 13



graphtools Documentation, Release 1.5.2

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

14 Chapter 2. Reference
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Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.graphs.MNNLandmarkGraph(data, sample_idx, knn=5, beta=1, n_pca=None,
decay=None, adaptive_k=None, band-
width=None, distance=’euclidean’,
thresh=0.0001, n_jobs=1, **kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph

K
Kernel matrix

2.2. Graph Classes 15
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Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

16 Chapter 2. Reference



graphtools Documentation, Release 1.5.2

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
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Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)
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to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.MNNLandmarkPyGSPGraph(data, sample_idx, knn=5, beta=1,
n_pca=None, decay=None, adap-
tive_k=None, bandwidth=None, dis-
tance=’euclidean’, thresh=0.0001,
n_jobs=1, **kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph,
graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).
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The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.
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check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
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compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.
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Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

2.2. Graph Classes 23



graphtools Documentation, Release 1.5.2

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data
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Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray
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Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray
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grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided
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Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
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Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().
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plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.
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Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.
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Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.MNNPyGSPGraph(data, sample_idx, knn=5, beta=1, n_pca=None,
decay=None, adaptive_k=None, bandwidth=None,
distance=’euclidean’, thresh=0.0001, n_jobs=1,
**kwargs)

Bases: graphtools.graphs.MNNGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
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U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the MNN kernel.

Build a mutual nearest neighbors kernel.

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, theta=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta
values must be explicitly specified between Y and each sample in self.data

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

compute_differential_operator()
Compute the graph differential operator (cached).
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The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape

(continues on next page)
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(continued from previous page)

(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix
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Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.
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Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)
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Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray
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Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .
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Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

40 Chapter 2. Reference



graphtools Documentation, Release 1.5.2

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().
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modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new
values) –

Returns
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Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.
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to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.TraditionalGraph(data, knn=5, decay=40, bandwidth=None,
bandwidth_scale=1.0, distance=’euclidean’,
n_pca=None, thresh=0.0001, precom-
puted=None, **kwargs)

Bases: graphtools.base.DataGraph

Traditional weighted adjacency graph

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame. If
precomputed is not None, data should be an [n_samples, n_samples] matrix denoting pair-
wise distances, affinities, or edge weights.

• knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to
build the graph

• decay (int or None, optional (default: 40)) – Rate of alpha decay to use. If None, alpha
decay is not used.

• bandwidth (float, list-like,‘callable‘, or None, optional (default: None)) – Fixed
bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like
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(shape=[n_samples]) of bandwidths for each sample, or a callable that takes in a n x m
matrix and returns a a single value or list-like of length n (shape=[n_samples])

• bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

• distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance
can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has
even more choices

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None,False,0], uses the original data. If True then
estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. Note that the default kwarg is None for this
parameter. It is subsequently parsed to ‘auto’ if necessary. If ‘auto’, this threshold is smax
* np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value
of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B.
Flannery, “Numerical Recipes (3rd edition)”, Cambridge University Press, 2007, page 795.

• thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay
kernel. All affinities below thresh will be set to zero in order to save on time and memory
constraints.

• precomputed ({‘distance’, ‘affinity’, ‘adjacency’, None},) – optional (default: None) If
the graph is precomputed, this variable denotes which graph matrix is provided as data.
Only one of precomputed and n_pca can be set.

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing
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transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data
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• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]
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• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted
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class graphtools.graphs.TraditionalLandmarkGraph(data, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0,
distance=’euclidean’, n_pca=None,
thresh=0.0001, precomputed=None,
**kwargs)

Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.
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clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]
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inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]
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• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.
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Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.TraditionalLandmarkPyGSPGraph(data, knn=5, decay=40,
bandwidth=None, band-
width_scale=1.0, dis-
tance=’euclidean’,
n_pca=None, thresh=0.0001,
precomputed=None,
**kwargs)

Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph,
graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph
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Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,
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where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

2.2. Graph Classes 55



graphtools Documentation, Release 1.5.2

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P
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div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.
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Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)
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Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray
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Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .
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Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
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vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]
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lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object
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Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –
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to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.TraditionalPyGSPGraph(data, knn=5, decay=40, band-
width=None, bandwidth_scale=1.0,
distance=’euclidean’, n_pca=None,
thresh=0.0001, precomputed=None,
**kwargs)

Bases: graphtools.graphs.TraditionalGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).
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The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropri-
ate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

Raises ValueError: if precomputed is not an acceptable value

build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

• ValueError: if precomputed is not None, then the graph cannot

• be extended.

check_weights()
Check the characteristics of the weights matrix.
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Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.
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Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples
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>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples
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>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data
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Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray
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Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray
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grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided
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Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).
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In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().
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plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid
parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay -
bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]
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Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
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Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.kNNGraph(data, knn=5, decay=None, knn_max=None,
search_multiplier=6, bandwidth=None, band-
width_scale=1.0, distance=’euclidean’, thresh=0.0001,
n_pca=None, **kwargs)

Bases: graphtools.base.DataGraph

K nearest neighbors graph

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.

• knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to
build the graph

• decay (int or None, optional (default: None)) – Rate of alpha decay to use. If None, alpha
decay is not used.

• bandwidth (float, list-like,‘callable‘, or None,) – optional (default: None) Fixed band-
width to use. If given, overrides knn. Can be a single bandwidth, or a list-like
(shape=[n_samples]) of bandwidths for each sample

• bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

• distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance
can be used distance metric for building kNN graph. Custom distance functions of form f(x,
y) = d are also accepted. TODO: actually sklearn.neighbors has even more choices

• thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay
kernel. All affinities below thresh will be set to zero in order to save on time and memory
constraints.

knn_tree
The fitted KNN tree. (cached) TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

Type sklearn.neighbors.NearestNeighbors

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)
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Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)
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Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]
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knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.
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to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.graphs.kNNLandmarkGraph(data, knn=5, decay=None, knn_max=None,
search_multiplier=6, bandwidth=None,
bandwidth_scale=1.0, distance=’euclidean’,
thresh=0.0001, n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data
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Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data
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Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree
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Return type sklearn.neighbors.NearestNeighbors

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.
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Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.kNNLandmarkPyGSPGraph(data, knn=5, decay=None,
knn_max=None, search_multiplier=6,
bandwidth=None, bandwidth_scale=1.0,
distance=’euclidean’, thresh=0.0001,
n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph,
graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]
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P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by
using transition probabilities between samples assigned to each cluster.

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false
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• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

clusters
Cluster assignments for each sample.

Compute or return the cluster assignments

Returns clusters – Cluster assignments for each sample.

Return type list-like, shape=[n_samples]

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.
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Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples
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>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples
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>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(data, **kwargs)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by performing

transform_Y = transitions.dot(transform)

Parameters Y (array-like, [n_samples_y, n_features]) – new data for which
an affinity matrix is calculated to the existing data. n_features must match either the ambient
or PCA dimensions

Returns transitions – Transition matrix from Y to self.data
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Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray
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Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray
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grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided
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Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_features]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
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Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

landmark_op
Landmark operator

Compute or return the landmark operator

Returns landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies
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Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters
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• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G
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Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions
Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions – Transition probabilities between samples and landmarks.

Return type array-like, shape=[n_samples, n_landmark]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.kNNPyGSPGraph(data, knn=5, decay=None, knn_max=None,
search_multiplier=6, bandwidth=None, band-
width_scale=1.0, distance=’euclidean’,
thresh=0.0001, n_pca=None, **kwargs)

Bases: graphtools.graphs.kNNGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]
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P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

apply_anisotropy(K)

build_kernel()
Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, band-
width_scale=None)

Build a kernel from new input data Y to the self.data

Parameters

• Y (array-like, [n_samples_y, n_features]) – new data for which an affin-
ity matrix is calculated to the existing data. n_features must match either the ambient or
PCA dimensions

• knn (int or None, optional (default: None)) – If None, defaults to self.knn

• bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to
self.bandwidth

• bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises ValueError: if the supplied data is the wrong shape

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false
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Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.
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References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.
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diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.
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Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()

(continues on next page)
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(continued from previous page)

>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

get_params()
Get parameters from this object

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).
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• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray

grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence
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Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided
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inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical
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Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

knn_tree
KNN tree object (cached)

Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to
choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.
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See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid pa-
rameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel
matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

subgraph(ind)
Create a subgraph given indices.
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Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate(f, i)
Translate the signal f to the node i.

Parameters

• f (ndarray) – Signal
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• i (int) – Indices of vertex

Returns ft

Return type translate signal

weighted

2.3 Base Classes

class graphtools.base.Base
Bases: object

Class that deals with key-word arguments but is otherwise just an object.

set_params(**kwargs)

class graphtools.base.BaseGraph(kernel_symm=’+’, theta=None, anisotropy=0, gamma=None,
initialize=True, **kwargs)

Bases: graphtools.base.Base

Parent graph class

Parameters

• kernel_symm (string, optional (default: '+')) – Defines method of
kernel symmetrization. ‘+’ : additive ‘*’ : multiplicative ‘mnn’ : min-max MNN sym-
metrization ‘none’ : no symmetrization

• theta (float (default: 1)) – Min-max symmetrization constant. K = theta *
min(K, K.T) + (1 - theta) * max(K, K.T)

• anisotropy (float, optional (default: 0)) – Level of anisotropy between
0 and 1 (alpha in Coifman & Lafon, 2006)

• initialize (bool, optional (default : True)) – if false, don’t create the kernel matrix.

K
kernel matrix defined as the adjacency matrix with ones down the diagonal

Type array-like, shape=[n_samples, n_samples]

kernel

Type synonym for K

P
diffusion operator defined as a row-stochastic form of the kernel matrix

Type array-like, shape=[n_samples, n_samples] (cached)

diff_op

Type synonym for P

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]
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P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

apply_anisotropy(K)

build_kernel()
Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

get_params()
Get parameters from this object

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: Invalid parameters: (these would require modifying the kernel matrix) - kernel_symm - theta

Parameters params (key-value pairs of parameter name and new
values) –

Returns

Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph
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Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

weighted

class graphtools.base.Data(data, n_pca=None, rank_threshold=None, random_state=None,
**kwargs)

Bases: graphtools.base.Base

Parent class that handles the import and dimensionality reduction of data

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix. pandas.DataFrame, pandas.SparseDataFrame.
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• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None, False, 0], uses the original data. If ‘auto’ or
True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead
of PCA TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. If ‘auto’, this threshold is s_max * eps *
max(n_samples, n_features) where s_max is the maximum singular value of the data matrix
and eps is numerical precision. [press2007].

• random_state (int or None, optional (default: None)) – Random state for random PCA

data
Original data matrix

Type array-like, shape=[n_samples,n_features]

n_pca

Type int or None

data_nu
Reduced data matrix

Type array-like, shape=[n_samples,n_pca]

data_pca
sklearn PCA operator

Type sklearn.decomposition.PCA or sklearn.decomposition.TruncatedSVD

get_params()
Get parameters from this object

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: - n_pca - random_state

Parameters params (key-value pairs of parameter name and new
values) –

Returns
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Return type self

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

class graphtools.base.DataGraph(data, verbose=True, n_jobs=1, **kwargs)
Bases: graphtools.base.Data, graphtools.base.BaseGraph

Abstract class for graphs built from a dataset

Parameters

• data (array-like, shape=[n_samples,n_features]) – accepted types:
numpy.ndarray, scipy.sparse.spmatrix.

• n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to
retain for graph building. If n_pca in [None,False,0], uses the original data. If True then
estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

• rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when es-
timating rank for n_pca in [True, ‘auto’]. Note that the default kwarg is None for this
parameter. It is subsequently parsed to ‘auto’ if necessary. If ‘auto’, this threshold is smax
* np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value
of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B.
Flannery, “Numerical Recipes (3rd edition)”, Cambridge University Press, 2007, page 795.

• random_state (int or None, optional (default: None)) – Random state for random PCA
and graph building

• verbose (bool, optional (default: True)) – Verbosity.

• n_jobs (int, optional (default : 1)) – The number of jobs to use for the computation. If -1
all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful
for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2,
all CPUs but one are used

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)

Return or calculate the diffusion operator

Returns P – diffusion operator defined as a row-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
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apply_anisotropy(K)

build_kernel()
Build the kernel matrix

Abstract method that all child classes must implement. Must return a symmetric matrix

Returns K – symmetric matrix with ones down the diagonal with no non-negative entries.

Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data(Y)
Build a kernel from new input data Y to the self.data

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns K_yx – kernel matrix where each row represents affinities of a single sample in Y to all
samples in self.data.

Return type array-like, [n_samples_y, n_samples]

Raises

• ValueError: if this Graph is not capable of extension or

• if the supplied data is the wrong shape

diff_aff
Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

𝐴(𝑥, 𝑦) = 𝐾(𝑥, 𝑦)(𝑑(𝑥)𝑑(𝑦))−1/2

where 𝑑 is the degrees (row sums of the kernel.)

Returns diff_aff – symmetric diffusion affinity matrix defined as a doubly-stochastic form of
the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op
Synonym for P

extend_to_data(Y)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing

transform_Y = self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) – new data for
which an affinity matrix is calculated to the existing data. n_features must match either
the ambient or PCA dimensions

Returns transitions – Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()
Get parameters from this object
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interpolate(transform, transitions=None, Y=None)
Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

Parameters

• transform (array-like, shape=[n_samples,
n_transform_features]) –

• transitions (array-like, optional, shape=[n_samples_y,
n_samples]) – Transition matrix from Y (not provided) to self.data

• Y (array-like, optional, shape=[n_samples_y, n_dimensions]) –
new data for which an affinity matrix is calculated to the existing data. n_features must
match either the ambient or PCA dimensions

Returns Y_transform – Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]

Raises ValueError: if neither transitions nor Y is provided

inverse_transform(Y, columns=None)
Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as
self.data.

Parameters

• Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the
same as self.data_nu.

• columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only a few dimensions of
the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel
Synonym for K

kernel_degree
Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

Returns degrees – Row sums of graph kernel

Return type array-like, shape=[n_samples]

set_params(**params)
Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Valid param-
eters: - n_jobs - verbose

Parameters params (key-value pairs of parameter name and new
values) –

Returns
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Return type self

shortest_path(method=’auto’, distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

• method (string ['auto'|'FW'|'D']) – method to use. Options are ‘auto’ : at-
tempt to choose the best method for the current problem ‘FW’ : Floyd-Warshall algorithm.
O[N^3] ‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

• distance ({'constant', 'data', 'affinity'}, optional
(default: 'data')) – Distances along kNN edges. ‘constant’ gives con-
stant edge lengths. ‘data’ gives distances in ambient data space. ‘affinity’ gives distances
as negative log affinities.

Returns D – D[i,j] gives the shortest distance from point i to point j along the graph. If no path
exists, the distance is np.inf

Return type np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

symmetrize_kernel(K)

to_igraph(attribute=’weight’, **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

• attribute (str, optional (default: "weight")) –

• kwargs (additional arguments for igraph.Graph) –

to_pickle(path)
Save the current Graph to a pickle.

Parameters path (str) – File path where the pickled object will be stored.

to_pygsp(**kwargs)
Convert to a PyGSP graph

For use only when the user means to create the graph using the flag use_pygsp=True, and doesn’t wish
to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix
which also inherits from pygsp.graphs.Graph.

Parameters kwargs – keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform(Y)
Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as
self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) – n_features
must be the same as self.data.

2.3. Base Classes 119



graphtools Documentation, Release 1.5.2

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

weighted

class graphtools.base.PyGSPGraph(lap_type=’combinatorial’, coords=None, plotting=None,
**kwargs)

Bases: pygsp.graphs.graph.Graph, graphtools.base.Base

Interface between BaseGraph and PyGSP.

All graphs should possess these matrices. We inherit a lot of functionality from pygsp.graphs.Graph.

There is a lot of overhead involved in having both a weight and kernel matrix

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of
booleans. 𝐴𝑖,𝑗 is True if 𝑊𝑖,𝑗 > 0.

D
Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

K
Kernel matrix

Returns K – kernel matrix defined as the adjacency matrix with ones down the diagonal

Return type array-like, shape=[n_samples, n_samples]

U
Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

check_weights()
Check the characteristics of the weights matrix.

Returns

• A dict of bools containing informations about the matrix

• has_inf_val (bool) – True if the matrix has infinite values else false

• has_nan_value (bool) – True if the matrix has a “not a number” value else false

• is_not_square (bool) – True if the matrix is not square else false

• diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
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compute_differential_operator()
Compute the graph differential operator (cached).

The differential operator is a matrix such that

𝐿 = 𝐷𝑇𝐷,

where 𝐷 is the differential operator and 𝐿 is the graph Laplacian. It is used to compute the gradient and
the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad() compute the gradient

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

compute_fourier_basis(recompute=False)
Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U , e, lmax, and mu properties.

Parameters recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of the graph Laplacian 𝐿 such that:

𝐿 = 𝑈Λ𝑈*,

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑈 are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in
G.lmax. The eigenvectors are stored as column vectors of G.U in the same order that the eigenvalues.
Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples
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>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

compute_laplacian(lap_type=’combinatorial’)
Compute a graph Laplacian.

The result is accessible by the L attribute.

Parameters lap_type ('combinatorial', 'normalized') – The type of Laplacian
to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

𝐿 = 𝐷 −𝑊,

where 𝑊 is the weight matrix and 𝐷 the degree matrix, and the normalized Laplacian is defined as

𝐿 = 𝐼 −𝐷−1/2𝑊𝐷−1/2,

where 𝐼 is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

d
The degree (the number of neighbors) of each node.

div(s)
Compute the divergence of a graph signal.

The divergence of a signal 𝑠 is defined as

𝑦 = 𝐷𝑇 𝑠,

where 𝐷 is the differential operator D.
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Parameters s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

Returns s_div – Divergence signal of length G.N living on the nodes.

Return type ndarray

See also:

compute_differential_operator()

grad() compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

dw
The weighted degree (the sum of weighted edges) of each node.

e
Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

estimate_lmax(recompute=False)
Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis().
That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) – Force to recompute the largest eigenvalue. Default is
false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest
eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on
an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial
approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As
this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
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extract_components()
Split the graph into connected components.

See is_connected() for the method used to determine connectedness.

Returns graphs – A list of graph structures. Each having its own node list and weight matrix.
If the graph is directed, add into the info parameter the information about the source nodes
and the sink nodes.

Return type list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

get_edge_list()
Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the
easiest to work with when considering spectral methods.

Returns

• v_in (vector of int)

• v_out (vector of int)

• weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

gft(s)
Compute the graph Fourier transform.

The graph Fourier transform of a signal 𝑠 is defined as

𝑠 = 𝑈*𝑠,

where 𝑈 is the Fourier basis attr:U and 𝑈* denotes the conjugate transpose or Hermitian transpose of 𝑈 .

Parameters s (ndarray) – Graph signal in the vertex domain.

Returns s_hat – Representation of s in the Fourier domain.

Return type ndarray
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Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

gft_windowed(g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

• g (ndarray or Filter) – Window (graph signal or kernel).

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory (default=True).

Returns C – Coefficients.

Return type ndarray

gft_windowed_gabor(s, k)
Gabor windowed graph Fourier transform.

Parameters

• s (ndarray) – Graph signal in the vertex domain.

• k (function) – Gabor kernel. See pygsp.filters.Gabor.

Returns s – Vertex-frequency representation of the signals.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

• g (ndarray) – Window.

• f (ndarray) – Graph signal in the vertex domain.

• lowmemory (bool) – Use less memory. (default = True)

Returns C – Coefficients.

Return type ndarray
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grad(s)
Compute the gradient of a graph signal.

The gradient of a signal 𝑠 is defined as

𝑦 = 𝐷𝑠,

where 𝐷 is the differential operator D.

Parameters s (ndarray) – Signal of length G.N living on the nodes.

Returns s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed graph).

Return type ndarray

See also:

compute_differential_operator()

div() compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

igft(s_hat)
Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal 𝑠 is defined as

𝑠 = 𝑈𝑠,

where 𝑈 is the Fourier basis U .

Parameters s_hat (ndarray) – Graph signal in the Fourier domain.

Returns s – Representation of s_hat in the vertex domain.

Return type ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
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is_connected(recompute=False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any
vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

Parameters recompute (bool) – Force to recompute the connectivity if already known.

Returns connected – True if the graph is connected.

Return type bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

is_directed(recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) – Force to recompute the directedness if already known.

Returns directed – True if the graph is directed.

Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

lmax
Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or approximated by
estimate_lmax().

modulate(f, k)
Modulate the signal f to the frequency k.

Parameters

• f (ndarray) – Signal (column)

• k (int) – Index of frequencies

Returns fm – Modulated signal
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Return type ndarray

mu
Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

plot(**kwargs)
Plot the graph.

See pygsp.plotting.plot_graph().

plot_signal(signal, **kwargs)
Plot a signal on that graph.

See pygsp.plotting.plot_signal().

plot_spectrogram(**kwargs)
Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

set_coordinates(kind=’spring’, **kwargs)
Set node’s coordinates (their position when plotting).

Parameters

• kind (string or array-like) – Kind of coordinates to generate. It controls the
position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3
to set the coordinates manually or the name of a layout algorithm. Available algorithms:
community2D, random2D, random3D, ring2D, line1D, spring. Default is ‘spring’.

• kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold force-
directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

set_params(**kwargs)

subgraph(ind)
Create a subgraph given indices.

Parameters ind (list) – Nodes to keep

Returns sub_G – Subgraph

Return type Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

translate(f, i)
Translate the signal f to the node i.
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Parameters

• f (ndarray) – Signal

• i (int) – Indices of vertex

Returns ft

Return type translate signal

2.4 Utilities

graphtools.utils.check_between(v_min, v_max, **params)
Checks parameters are in a specified range

Parameters

• v_min (float, minimum allowed value (inclusive)) –

• v_max (float, maximum allowed value (inclusive)) –

• params (object) – Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_greater(x, **params)
Check that parameters are greater than x as expected

Parameters x (excepted boundary) – Checks not run if parameters are greater than x

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_if_not(x, *checks, **params)
Run checks only if parameters are not equal to a specified value

Parameters

• x (excepted value) – Checks not run if parameters equal x

• checks (function) – Unnamed arguments, check functions to be run

• params (object) – Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_in(choices, **params)
Checks parameters are in a list of allowed parameters

Parameters

• choices (array-like, accepted values) –

• params (object) – Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_int(**params)
Check that parameters are integers as expected

Raises ValueError : unacceptable choice of parameters

graphtools.utils.check_positive(**params)
Check that parameters are positive as expected

Raises ValueError : unacceptable choice of parameters
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graphtools.utils.dense_nonzero_discrete(*args, **kwargs)

graphtools.utils.dense_set_diagonal(*args, **kwargs)

graphtools.utils.elementwise_maximum(*args, **kwargs)

graphtools.utils.elementwise_minimum(*args, **kwargs)

graphtools.utils.if_sparse(*args, **kwargs)

graphtools.utils.is_Anndata(X)

graphtools.utils.is_DataFrame(X)

graphtools.utils.is_SparseDataFrame(X)

graphtools.utils.matrix_is_equivalent(*args, **kwargs)

graphtools.utils.nonzero_discrete(*args, **kwargs)

graphtools.utils.set_diagonal(*args, **kwargs)

graphtools.utils.set_submatrix(*args, **kwargs)

graphtools.utils.sparse_maximum(*args, **kwargs)

graphtools.utils.sparse_minimum(*args, **kwargs)

graphtools.utils.sparse_nonzero_discrete(*args, **kwargs)

graphtools.utils.sparse_set_diagonal(*args, **kwargs)

graphtools.utils.to_array(*args, **kwargs)
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CHAPTER 3

Quick Start

To use graphtools, create a graphtools.Graph class:

from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'])
K = G.kernel
P = G.diff_op
G = graphtools.Graph(digits['data'], n_landmark=300)
L = G.landmark_op

To use graphtools with pygsp, create a graphtools.Graph class with use_pygsp=True:

from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'], use_pygsp=True)
N = G.N
W = G.W
basis = G.compute_fourier_basis()
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CHAPTER 4

Help

If you have any questions or require assistance using graphtools, please contact us at https://krishnaswamylab.org/
get-help
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