graphtools Documentation

Release 1.5.2

Scott Gigante and Jay Stanley, Yale University

Contents

1 Installation 3
1.1 Installation with pip 3
1.2 Installation from source 3
2 Reference 5
2.1 API 5
2.2 Graph Classes 7
2.3 Base Classes 112
2.4 Utilities 129
3 Quick Start 131
4 Help 133
Bibliography 135
Python Module Index 137
Index 139

Tools for building and manipulating graphs in Python.

Installation

1.1 Installation with pip

Install graphtools using:
pip install --user graphtools

1.2 Installation from source

Install from source using:

```
git clone git://github.com/KrishnaswamyLab/graphtools.git
cd graphtools
python setup.py install --user
```


CHAPTER 2

Reference

2.1 API

graphtools.api.Graph (data, $\quad n _p c a=N o n e, \quad r a n k _t h r e s h o l d=N o n e, \quad k n n=5, \quad$ decay=40, bandwidth=None, bandwidth_scale=1.0, knn_max=None, anisotropy=0, distance $=$ 'euclidean', thresh=0.0001, kernel_symm='+', theta=None, precomputed=None, beta=1, sample_idx=None, adaptive_k=None, n_landmark=None, $\quad n _s v d=100, \quad n _j o b s=-1, \quad$ verbose $=$ False, random_state=None, graphtype='auto', use_pygsp=False, initialize=True, **kwargs)
Create a graph built on data.
Automatically selects the appropriate DataGraph subclass based on chosen parameters. Selection criteria: - if graphtype is given, this will be respected - otherwise: - if sample_idx is given, an MNNGraph will be created if precomputed is not given, and either decay is None or thresh is given, a kNNGraph will be created - otherwise, a TraditionalGraph will be created.

Incompatibilities: - MNNGraph and kNNGraph cannot be precomputed - kNNGraph and TraditionalGraph do not accept sample indices

Parameters

- data (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix. TODO: accept pandas dataframes'
- n_pca (\{int, None, bool, 'auto'\}, optional (default: None)) - number of PC dimensions to retain for graph building. If n_pca in [None, False, 0], uses the original data. If 'auto' or True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- rank_threshold (float, 'auto', optional (default: ‘auto')) - threshold to use when estimating rank for $n _p c a$ in [True, 'auto']. If 'auto', this threshold is s_max * eps * $\max \left(\mathrm{n} _\right.$samples, $\mathrm{n} _$features) where s_max is the maximum singular value of the data matrix and eps is numerical precision. [press2007].
- knn (int, optional (default: 5)) - Number of nearest neighbors (including self) to use to build the graph
- decay (int or None, optional (default: 40)) - Rate of alpha decay to use. If None, alpha decay is not used and a vanilla k-Nearest Neighbors graph is returned.
- bandwidth (float, list-like,'callable‘, or None, optional (default: None)) - Fixed bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like (shape $=\left[\mathrm{n} _\right.$samples $]$) of bandwidths for each sample, or a callable that takes in an $n \times n$ distance matrix and returns a a single value or list-like of length n (shape=[n_samples])
- bandwidth_scale (float, optional (default : 1.0)) - Rescaling factor for bandwidth.
- knn_max (int or None, optional (default : None)) - Maximum number of neighbors with nonzero affinity
- anisotropy (float, optional (default: 0))-Level of anisotropy between 0 and 1 (alpha in Coifman \& Lafon, 2006)
- distance (str, optional (default: 'euclidean')) - Any metric from scipy.spatial.distance can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has even more choices
- thresh (float, optional (default: le-4)) - Threshold above which to calculate alpha decay kernel. All affinities below thresh will be set to zero in order to save on time and memory constraints.
- kernel_symm (string, optional (default: '+')) - Defines method of kernel symmetrization. ' + ' : additive '*' : multiplicative 'mnn' : min-max MNN symmetrization 'none' : no symmetrization
- theta (float (default: None)) - Min-max symmetrization constant or matrix. Only used if kernel_symm='mnn'. $\mathrm{K}=$ theta $* \min (K, K . T)+(1-$ theta $) * \max (K, K . T)$
- precomputed (\{‘distance’, 'affinity’, ‘adjacency’, None\}, optional (default: None)) - If the graph is precomputed, this variable denotes which graph matrix is provided as data. Only one of precomputed and $n _p c a$ can be set.
- beta (float, optional(default: 1))-Multiply between - batch connections by beta
- sample_idx (array-like) - Batch index for MNN kernel
- adaptive_k (\{'min', 'mean', 'sqrt', 'none'\} (default: None)) - Weights MNN kernel adaptively using the number of cells in each sample according to the selected method.
- n_landmark (int, optional (default: 2000)) - number of landmarks to use
- n_svd (int, optional (default: 100)) - number of SVD components to use for spectral clustering
- random_state (int or None, optional (default: None)) - Random state for random PCA
- verbose (bool, optional (default: True)) - Verbosity. TODO: should this be an integer instead to allow multiple levels of verbosity?
- n_jobs (int, optional (default : 1)) - The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_{-}jobs below -1 , ($n_{_}$cpus $+1+n_{-}$jobs) are used. Thus for n_{-}jobs $=-2$, all CPUs but one are used
- graphtype (\{'exact', 'knn', 'mnn', 'auto'\} (Default: 'auto')) - Manually selects graph type. Only recommended for expert users
- use_pygsp (bool (Default: False)) - If true, inherits from pygsp.graphs.Graph.
- initialize (bool (Default: True)) - If True, initialize the kernel matrix on instantiation
- **kwargs (extra arguments for pygsp.graphs.Graph) -

Returns G

Return type DataGraph
Raises ValueError: if selected parameters are incompatible.

References

graphtools.api.from_igraph (G, attribute='weight', **kwargs)
Convert an igraph.Graph to a graphtools.Graph
Creates a graphtools.graphs.TraditionalGraph with a precomputed adjacency matrix

Parameters

- G (igraph. Graph) - Graph to be converted
- attribute (str, optional (default: "weight")) - attribute containing edge weights, if any. If None, unweighted graph is built
- kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.graphs.TraditionalGraph

```
graphtools.api.read_pickle(path)
```

Load pickled Graphtools object (or any object) from file.
Parameters path (str) - File path where the pickled object will be loaded.

2.2 Graph Classes

class graphtools.graphs.LandmarkGraph (data, n _landmark=2000, $n _$_svd=100, **kwargs)
Bases: graphtools.base.DataGraph
Landmark graph
Adds landmarking feature to any data graph by taking spectral clusters and building a 'landmark operator' from clusters to samples and back to clusters. Any transformation on the landmark kernel is trivially extended to the data space by multiplying by the transition matrix.

Parameters

- data (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix., pandas.DataFrame, pandas.SparseDataFrame.
- n_landmark (int, optional (default: 2000)) - number of landmarks to use
- n_svd (int, optional (default: 100)) - number of SVD components to use for spectral clustering

landmark_op

Landmark operator. Can be treated as a diffusion operator between landmarks.
Type array-like, shape=[n_landmark, n_landmark]

transitions

Transition probabilities between samples and landmarks.
Type array-like, shape=[n_samples, n_landmark]

clusters

Private attribute. Cluster assignments for each sample.
Type array-like, shape=[n_samples]

Examples

```
>>> G = graphtools.Graph(data, n_landmark=1000)
>>> X_landmark = transform(G.landmark_op)
>>> X_full = G.interpolate(X_landmark)
```

K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]

```
apply_anisotropy(K)
```

build_kernel()
Build the kernel matrix
Abstract method that all child classes must implement. Must return a symmetric matrix
Returns K - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]

build_kernel_to_data (Y)

Build a kernel from new input data Y to the self.data
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns K_yx - kernel matrix where each row represents affinities of a single sample in Y to all samples in self.data.
Return type array-like, [n_samples_y, n_samples]

Raises

- ValueError: if this Graph is not capable of extension or
- if the supplied data is the wrong shape
build_landmark_op()
Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
extend_to_data (data, **kwargs)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object
interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data

Return type array-like, [n_samples_y, n_features or n_pca]
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]

landmark_op

Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_landmark - n_svd

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N}))^{\mathrm{N}} \mathrm{N}^{\wedge}\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (attribute='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph) -

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape=[n_samples, n_landmark]

weighted

class graphtools.graphs.MNNGraph (data, sample_idx, knn=5, beta=1, n_pca=None, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh=0.0001, n _jobs $=1, * * k w a r g s$)
Bases: graphtools.base.DataGraph
Mutual nearest neighbors graph
Performs batch correction by forcing connections between batches, but only when the connection is mutual (i.e. x is a neighbor of $y \quad$ and $_y$ is a neighbor of x).

Parameters

- data (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.
- sample_idx (array-like, shape=[n_samples]) - Batch index
- beta (float, optional (default: 1)) - Downweight between-batch affinities by beta
- adaptive_k (\{'min', 'mean', 'sqrt', None\} (default: None)) - Weights MNN kernel adaptively using the number of cells in each sample according to the selected method.

subgraphs

Graphs representing each batch separately
Type list of graphtools.graphs.kNNGraph
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]

```
apply_anisotropy(K)
```

build_kernel()

Build the MNN kernel.
Build a mutual nearest neighbors kernel.
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data (Y, theta $=$ None)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- theta (array-like or None, optional (default: None)) - if self.theta is a matrix, theta values must be explicitly specified between Y and each sample in self.data

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
extend_to_data (Y)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data. Any transformation of self.data can be trivially applied to Y by performing
transform_Y = self.interpolate(transform, transitions)
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params()

Get parameters from this object
interpolate (transform, transitions=None, $Y=$ None $)$
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

```
Parameters params (key-value pairs of parameter name and new
values) -
```


Returns

Return type self

```
shortest_path (method='auto', distance=None)
```

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'|'FW'|'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (attribute ='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-
to_pickle (path)
Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform (Y)

Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]
weighted
class graphtools.graphs.MNNLandmarkGraph (data, sample_idx, knn=5, beta=1, $n _p c a=N o n e$, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh $=0.0001, n_{-}$jobs $=1, * *$ kwargs)
Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph
K
Kernel matrix

Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the MNN kernel.
Build a mutual nearest neighbors kernel.
Returns K - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data $(Y$, theta $=$ None $)$
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_Y = transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions
- theta (array-like or None, optional (default: None)) - if self.theta is a matrix, theta values must be explicitly specified between Y and each sample in self.data

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]
build_landmark_op()
Build the landmark operator
Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.
clusters
Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)

Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
diff_op
Synonym for P
extend_to_data (data, **kwargs)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]
get_params()
Get parameters from this object
interpolate (transform, transitions=None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]

Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
landmark_op
Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

```
Parameters params (key-value pairs of parameter name and new
values) -
```


Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem ' FW ' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes
Currently, shortest paths can only be calculated on kNNGraphs with decay=None
symmetrize_kernel (K)

```
to_igraph (attribute='weight', **kwargs)
```

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph.Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph
Returns G
Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.
Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape $=\left[\mathrm{n} _\right.$samples, n _landmark]
weighted
class graphtools.graphs.MNNLandmarkPyGSPGraph(data, sample_idx, knn=5, beta=1, $n _p c a=N o n e, \quad$ decay=None, adaptive_ $k=$ None, \quad bandwidth=None, distance='euclidean', thresh=0.0001,

Bases: graphtools.graphs.MNNGraph, $n_{-j o b s}=1$, **kwargs) graphtools.base.PYGSPGraph

A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.

D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
U
Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().
apply_anisotropy (K)
build_kernel()
Build the MNN kernel.
Build a mutual nearest neighbors kernel.
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data (Y, theta=None)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. $n _$features must match either the ambient or PCA dimensions
- theta (array-like or None, optional (default: None)) - if self.theta is a matrix, theta values must be explicitly specified between Y and each sample in self.data
Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]
build_landmark_op()
Build the landmark operator
Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> Cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```


clusters

Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]
compute_differential_operator()
Compute the graph differential operator (cached).
The differential operator is a matrix such that

$$
L=D^{T} D
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)
Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, e, Imax, and mu properties.
Parameters recompute (bool) - Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < I
True
```

compute_laplacian (lap_type='combinatorial')
Compute a graph Laplacian.
The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2}
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10< G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>>-1e-10<G.e[0]<1e-10<G.e[-1]<2 # Spectrum in [0, 2].
True
```

d
The degree (the number of neighbors) of each node.
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
$\operatorname{div}(s)$
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s
$$

where D is the differential operator D.
Parameters \mathbf{s} (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

compute_differential_operator()
grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().
estimate_lmax (recompute $=$ False)
Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L . The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L .

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format (G.lmax))
13.92
```

extend_to_data (data, **kwargs)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n _features must match either the ambient or PCA dimensions
Returns transitions - Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.
See is_connected () for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()
Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object
gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s(ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True
```

gft_windowed (g,f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C-Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- \mathbf{k} (function) - Gabor kernel. See pygsp.filters. Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (g, f, lowmemory=True)

Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C-Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s (ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.
Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns s-Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform
(array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform (Y, columns=None)

Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]
is_connected (recompute $=$ False)
Check the strong connectivity of the graph (cached).
It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed (recompute=False)
Check if the graph has directed edges (cached).
In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```


kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
landmark_op
Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

1 max

Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- \mathbf{k} (int) - Index of frequencies

Returns fm - Modulated signal
Return type ndarray
mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot (**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram(**kwargs)
Plot the graph's spectrogram.
See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size $\mathrm{N} \times 2$ or $\mathrm{N} \times 3$ to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem ' FW ' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None
subgraph (ind)
Create a subgraph given indices.
Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

$\ggg W=$ np.arange (16). reshape (4, 4)
$\ggg G=$ graphs.Graph (W)
\ggg ind $=[1,3]$
\ggg sub_G $=$ G.subgraph (ind)

symmetrize_kernel (K)

to_igraph (attribute $=$ 'weight', $* *$ kwargs)
Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-
to_pickle (path)
Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.
to_pygsp (**kwargs)
Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools. Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.
Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape=[n_samples, n_landmark]
translate (f, i)
Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft

Return type translate signal
weighted
class graphtools.graphs.MNNPyGSPGraph (data, sample_idx, knn=5, beta=1, $n _p c a=$ None, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh=0.0001, $\quad n_{-} j o b s=1$, **kwargs)
Bases: graphtools.graphs.MNNGraph, graphtools.base.PyGSPGraph
A
Graph adjacency matrix (the binary version of W).
The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.
D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]

U

Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().
apply_anisotropy (K)
build_kernel()
Build the MNN kernel.
Build a mutual nearest neighbors kernel.
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data (Y, theta=None)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)

Parameters

- Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions
- theta (array-like or None, optional (default: None)) - if self.theta is a matrix, theta values must be explicitly specified between Y and each sample in self.data
Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]
check_weights()
Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> Cw = G.check_weights()
>>> Cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator()

Compute the graph differential operator (cached).

The differential operator is a matrix such that

$$
L=D^{T} D
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad () and div().

The result is cached and accessible by the D property.
See also:
grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)
Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, , I max, and mu properties.
Parameters recompute (bool) - Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
```

```
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < I
True
```

compute_laplacian (lap_type='combinatorial')

Compute a graph Laplacian.
The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2},
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10<G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10<G.e[0]<1e-10<G.e[-1]<2 # Spectrum in [0, 2].
True
```

d
The degree (the number of neighbors) of each node.
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
diff_op
Synonym for P
$\operatorname{div}(s)$
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s
$$

where D is the differential operator D.
Parameters \mathbf{s} (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

compute_differential_operator()
grad () compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

$d w$
The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().
estimate_lmax (recompute=False)
Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L . The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L .

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format (G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (Y)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing
transform_Y = self.interpolate(transform, transitions)
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.
See is_connected () for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- $\mathbf{v} _$out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params ()

Get parameters from this object
gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s(ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True
```

gft_windowed (g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C - Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- k (function) - Gabor kernel. See pygsp.filters. Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C - Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s (ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray
See also:
compute_differential_operator()
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.

Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns s-Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]
is_connected (recompute $=$ False)
Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph (W=W)
>>> connected = G.is_connected()
```

is_directed (recompute=False)
Check if the graph has directed edges (cached).
In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
Parameters recompute (bool) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph (W=W)
>>> directed = G.is_directed()
```


kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
lmax
Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- \mathbf{k} (int) - Index of frequencies

Returns fm - Modulated signal
Return type ndarray
mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot (**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram(**kwargs)
Plot the graph's spectrogram.
See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
```

>>> G.set_coordinates()
>>> G.plot()
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - adaptive_k - decay - distance - thresh - beta

Parameters params

(key-value pairs of parameter name and new

```
values) -
```


Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
subgraph (ind)
```

Create a subgraph given indices.
Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel (K)
to_igraph (attribute='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.
to_pygsp (**kwargs)
Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]
translate (f, i)
Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.TraditionalGraph(data, knn=5, decay=40, bandwidth=None, bandwidth_scale $=1.0, \quad$ distance $=$ 'euclidean', n_pca=None, thresh=0.0001, precomputed $=$ None, ${ }^{* *}$ kwargs)
Bases: graphtools.base.DataGraph
Traditional weighted adjacency graph

Parameters

- data (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame. If precomputed is not None, data should be an [n_samples, n_samples] matrix denoting pairwise distances, affinities, or edge weights.
- knn (int, optional (default: 5)) - Number of nearest neighbors (including self) to use to build the graph
- decay (int or None, optional (default: 40)) - Rate of alpha decay to use. If None, alpha decay is not used.
- bandwidth (float, list-like,'callable', or None, optional (default: None)) - Fixed bandwidth to use. If given, overrides knn. Can be a single bandwidth, list-like
(shape $=\left[\mathrm{n} _\right.$samples $]$) of bandwidths for each sample, or a callable that takes in a $n x m$ matrix and returns a a single value or list-like of length n (shape=[n_samples])
- bandwidth_scale (float, optional (default : 1.0)) - Rescaling factor for bandwidth.
- distance (str, optional (default: 'euclidean')) - Any metric from scipy.spatial.distance can be used distance metric for building kNN graph. TODO: actually sklearn.neighbors has even more choices
- n_pca (\{int, None, bool, 'auto'\}, optional (default: None)) - number of PC dimensions to retain for graph building. If n_pca in [None,False,0], uses the original data. If True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- rank_threshold (float, 'auto', optional (default: 'auto')) - threshold to use when estimating rank for $n _p c a$ in [True, 'auto']. Note that the default kwarg is None for this parameter. It is subsequently parsed to 'auto' if necessary. If 'auto', this threshold is smax * np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795.
- thresh (float, optional (default: $1 e-4$)) - Threshold above which to calculate alpha decay kernel. All affinities below thresh will be set to zero in order to save on time and memory constraints.
- precomputed (\{‘distance’, 'affinity’, 'adjacency’, None\},) - optional (default: None) If the graph is precomputed, this variable denotes which graph matrix is provided as data. Only one of precomputed and $n _p c a$ can be set.

K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
Raises ValueError: if precomputed is not an acceptable value
build_kernel_to_data (Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_Y $=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if precomputed is not None, then the graph cannot
- be extended.

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
extend_to_data (Y)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data. Any transformation of self.data can be trivially applied to Y by performing
transform_Y $=$ self.interpolate(transform, transitions)
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, shape=[n_samples_y, self.data.shape[0]]
get_params ()
Get parameters from this object
interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided

inverse_transform (Y, columns=None)

Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (attribute ='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters \mathbf{Y} (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

```
weighted
```

class graphtools.graphs.TraditionalLandmarkGraph (data, knn=5, decay=40, bandwidth=None, bandwidth_scale $=1.0$, distance='euclidean', $n _p c a=$ None, thresh=0.0001, precomputed $=$ None, **kwargs)
Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
Raises ValueError: if precomputed is not an acceptable value
build_kernel_to_data (Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n _features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if precomputed is not None, then the graph cannot
- be extended.
build_landmark_op()
Build the landmark operator
Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
extend_to_data (data, **kwargs)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions
Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

```
get_params()
```

Get parameters from this object
interpolate (transform, transitions $=$ None, $Y=$ None $)$
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

```
- transform (array-like, shape=[n_samples,
```

 n_transform_features])-
 - transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform (Y, columns=None)

Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]

landmark_op

Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (attribute ='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.
to_pygsp (**kwargs)
Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.

Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape=[n_samples, n_landmark]
weighted

```
class graphtools.graphs.TraditionalLandmarkPyGSPGraph(data, knn=5, decay=40,
    bandwidth=None, band-
    width_scale=1.0, dis-
    tance='euclidean',
    n_pca=None, thresh=0.0001,
    precomputed=None,
    **kwargs)
    Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph,
    graphtools.base.PYGSPGraph
```

A
Graph adjacency matrix (the binary version of W).
The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.

D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
U
Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().

```
apply_anisotropy(K)
```

build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
Raises ValueError: if precomputed is not an acceptable value
build_kernel_to_data (Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_Y = transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if precomputed is not None, then the graph cannot
- be extended.

build_landmark_op()

Build the landmark operator
Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

```
check_weights()
```

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> Cw = G.check_weights()
>>> Cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

clusters

Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]
compute_differential_operator()
Compute the graph differential operator (cached).
The differential operator is a matrix such that

$$
L=D^{T} D
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also:

grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)
Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, e, Imax, and mu properties.
Parameters recompute (bool) - Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mи.

References

See [chung 1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True
```

```
compute_laplacian(lap_type='combinatorial')
```

Compute a graph Laplacian.
The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2},
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>> -1e-10< G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10<G.e[0]<1e-10<G.e[-1]<2 # Spectrum in [0, 2].
True
```

d
The degree (the number of neighbors) of each node.

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
$\operatorname{div}(s)$
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s,
$$

where D is the differential operator D.
Parameters \mathbf{s} (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

```
compute_differential_operator()
```

grad () compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().
estimate_lmax (recompute=False)
Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L . The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L.

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (data, **kwargs)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.
See is_connected() for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()

Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params ()

Get parameters from this object
gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s(ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True
```

gft_windowed (g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C - Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- k (function) - Gabor kernel. See pygsp.filters. Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C - Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s (ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray
See also:
compute_differential_operator()
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.

Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns s-Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected (recompute $=$ False)

Check the strong connectivity of the graph (cached).
It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random
vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed (recompute=False)
Check if the graph has directed edges (cached).
In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
Parameters recompute (bool) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```


kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
landmark_op
Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]

lmax

Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- $\mathbf{k}(i n t)$ - Index of frequencies

Returns fm - Modulated signal
Return type ndarray
mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot (**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram (**kwargs)
Plot the graph's spectrogram.
See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params (**params)

Set parameters on this object

Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay bandwidth - bandwidth_scale

Parameters params (key-value pairs of parameter name and new values) -

Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
subgraph (ind)
```

Create a subgraph given indices.
Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel (K)
to_igraph (attribute $=$ 'weight', $* *$ kwargs $)$
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use $p y g s p=T r u e$, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform (Y)

Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.
Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape=[n_samples, n_landmark]

translate (f, i)

Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft

Return type translate signal
weighted
class graphtools.graphs.TraditionalPyGSPGraph (data, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', $\quad n _p c a=$ None, thresh=0.0001, precomputed $=$ None, **kwargs)
Bases: graphtools.graphs.TraditionalGraph, graphtools.base.PyGSPGraph
A
Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.

D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
U
Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. If precomputed is not None, the appropriate steps in the kernel building process are skipped. Must return a symmetric matrix

Returns K - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, $n _$samples]
Raises ValueError: if precomputed is not an acceptable value
build_kernel_to_data (Y, knn=None, bandwidth=None, bandwidth_scale=None)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, self.data.shape[0]]

Raises

- ValueError: if precomputed is not None, then the graph cannot
- be extended.
check_weights()
Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> Cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator ()

Compute the graph differential operator (cached).
The differential operator is a matrix such that

$$
L=D^{T} D
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad () and div().

The result is cached and accessible by the D property.

See also:

grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)

Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, e, Imax, and mu properties.
Parameters recompute (bool) - Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mи.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True
```

compute_laplacian (lap_type='combinatorial')

Compute a graph Laplacian.
The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2}
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>>-1e-10<G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10<G.e[0]<1e-10<G.e[-1]<2 # Spectrum in [0, 2].
True
```

d
The degree (the number of neighbors) of each node.
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
diff_op
Synonym for P
div (s)
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s
$$

where D is the differential operator D.
Parameters \mathbf{s} (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

compute_differential_operator()
grad () compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().
estimate_lmax (recompute $=$ False)
Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L . The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L .

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (Y)

Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data. Any transformation of self.data can be trivially applied to Y by performing
transform_Y = self.interpolate(transform, transitions)
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data

Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.
See is_connected () for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()
Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object
gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s(ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True
```

gft_windowed (g,f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C-Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- \mathbf{k} (function) - Gabor kernel. See pygsp.filters. Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (g, f, lowmemory=True)

Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C-Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s (ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.
Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns s-Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

is_connected (recompute $=$ False)

Check the strong connectivity of the graph (cached).
It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute ($\mathrm{b} \circ \circ \mathrm{l}$) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed (recompute=False)
Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
Parameters recompute ($b \circ \circ 1$) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes
Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```


kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
lmax
Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- \mathbf{k} (int) - Index of frequencies

Returns fm - Modulated signal
Return type ndarray
mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot (**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram (**kwargs)
Plot the graph's spectrogram.
See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params (**params)

Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Invalid parameters: (these would require modifying the kernel matrix) - precomputed - distance - knn - decay bandwidth - bandwidth_scale

```
Parameters params (key-value pairs of parameter name and new
    values)-
```


Returns

Return type self

```
shortest_path (method='auto', distance=None)
```

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem ' FW ' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None
subgraph (ind)
Create a subgraph given indices.
Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

symmetrize_kernel (K)
to_igraph (attribute='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform (Y)

Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]

Raises ValueError : if Y.shape[1] != self.data.shape[1]

translate (f, i)

Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft

Return type translate signal
weighted
class graphtools.graphs.kNNGraph (data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale $=1.0, \quad$ distance $=$ 'euclidean', \quad thresh $=0.0001$, $\left.n _p c a=N o n e, * * k w a r g s\right)$
Bases: graphtools.base.DataGraph
K nearest neighbors graph

Parameters

- data (array-like, shape=[n_samples,n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix, pandas.DataFrame, pandas.SparseDataFrame.
- knn (int, optional (default: 5)) - Number of nearest neighbors (including self) to use to build the graph
- decay (int or None, optional (default: None)) - Rate of alpha decay to use. If None, alpha decay is not used.
- bandwidth (float, list-like,'callable‘, or None,) - optional (default: None) Fixed bandwidth to use. If given, overrides knn. Can be a single bandwidth, or a list-like (shape $=[\mathrm{n}$ _samples] $]$) of bandwidths for each sample
- bandwidth_scale (float, optional (default : 1.0)) - Rescaling factor for bandwidth.
- distance (str, optional (default: 'euclidean')) - Any metric from scipy.spatial.distance can be used distance metric for building kNN graph. Custom distance functions of form $f(x$, $y)=d$ are also accepted. TODO: actually sklearn.neighbors has even more choices
- thresh (float, optional (default: le-4)) - Threshold above which to calculate alpha decay kernel. All affinities below thresh will be set to zero in order to save on time and memory constraints.

knn_tree

The fitted KNN tree. (cached) TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Type sklearn.neighbors.NearestNeighbors
K
Kernel matrix
Returns K - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)

Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data $\left(Y, \quad k n n=N o n e, \quad k n n _m a x=N o n e, \quad b a n d w i d t h=N o n e, \quad b a n d-\right.$ width_scale $=$ None)
Build a kernel from new input data Y to the self.data

Parameters

- Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. $n _$features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) - If None, defaults to self.knn
- bandwidth (float, callable, or None, optional (default: None)) - If None, defaults to self.bandwidth
- bandwidth_scale (float, optional (default : None)) - Rescaling factor for bandwidth. If None, defaults to self.bandwidth_scale

Returns K_yx - kernel matrix where each row represents affinities of a single sample in Y to all samples in self.data.
Return type array-like, [n_samples_y, n_samples]
Raises ValueError: if the supplied data is the wrong shape

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
extend_to_data (Y)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data. Any transformation of self.data can be trivially applied to Y by performing
transform_ $Y=$ self.interpolate(transform, transitions)

Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, shape=[n_samples_y, self.data.shape[0]]

get_params ()

Get parameters from this object
interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)
Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

```
Parameters params (key-value pairs of parameter name and new
values) -
```


Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem ' FW ' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf

Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None
symmetrize_kernel (K)
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.
to_pygsp (**kwargs)
Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]
weighted
class graphtools.graphs.kNNLandmarkGraph (data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale =1.0, \quad distance $=$ 'euclidean', thresh=0.0001, n_pca=None, **kwargs)
Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph
K
Kernel matrix
Returns K - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix
Returns K - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data $\left(Y, \quad k n n=N o n e, \quad k n n _m a x=N o n e, \quad b a n d w i d t h=N o n e, \quad b a n d-\right.$ width_scale=None)
Build a kernel from new input data Y to the self.data

Parameters

- Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) - If None, defaults to self.knn
- bandwidth (float, callable, or None, optional (default: None)) - If None, defaults to self.bandwidth
- bandwidth_scale (float, optional (default : None)) - Rescaling factor for bandwidth. If None, defaults to self.bandwidth_scale

Returns K_yx - kernel matrix where each row represents affinities of a single sample in Y to all samples in self.data.
Return type array-like, [n_samples_y, n_samples]
Raises ValueError: if the supplied data is the wrong shape
build_landmark_op()
Build the landmark operator
Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

clusters

Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

diff_op

Synonym for P
extend_to_data (data, **kwargs)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing
transform_ $Y=$ transitions.dot(transform)
Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]
get_params()
Get parameters from this object
interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]

```
knn_tree
```

KNN tree object (cached)
Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

landmark_op

Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

```
Parameters params (key-value pairs of parameter name and new
    values)-
```


Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (attribute ='weight', **kwargs)

Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-
to_pickle (path)
Save the current Graph to a pickle.

Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.
Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape $=\left[\mathrm{n} _\right.$samples, n _landmark]

weighted

class graphtools.graphs.kNNLandmarkPyGSPGraph(data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', thresh=0.0001, $n _p c a=$ None, ***wargs)
Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).
The adjacency matrix defines which edges exist on the graph. It is represented as an N -by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.
D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]

P

Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
U
Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data (Y, \quad knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)
Build a kernel from new input data Y to the self.data

Parameters

- Y(array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. $n _$features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) - If None, defaults to self.knn
- bandwidth (float, callable, or None, optional (default: None)) - If None, defaults to self.bandwidth
- bandwidth_scale (float, optional (default : None)) - Rescaling factor for bandwidth. If None, defaults to self.bandwidth_scale

Returns $\mathbf{K}_{-} \mathbf{y x}$ - kernel matrix where each row represents affinities of a single sample in Y to all samples in self.data.
Return type array-like, [n_samples_y, n_samples]
Raises ValueError: if the supplied data is the wrong shape
build_landmark_op()
Build the landmark operator
Calculates spectral clusters on the kernel, and calculates transition probabilities between cluster centers by using transition probabilities between samples assigned to each cluster.

check_weights()

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange (4).reshape (2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> Cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```


clusters

Cluster assignments for each sample.
Compute or return the cluster assignments
Returns clusters - Cluster assignments for each sample.
Return type list-like, shape=[n_samples]
compute_differential_operator()
Compute the graph differential operator (cached).
The differential operator is a matrix such that

$$
L=D^{T} D,
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad () and div ().
The result is cached and accessible by the D property.

See also:

grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)

Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, e, Imax, and mu properties.
Parameters recompute (bool) - Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mи.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True
```

compute_laplacian (lap_type='combinatorial')

Compute a graph Laplacian.
The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2}
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>>-1e-10<G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10<G.e[0]<1e-10<G.e[-1]<2 # spectrum in [0, 2].
True
```

d
The degree (the number of neighbors) of each node.
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, $n _$samples]
diff_op
Synonym for P
div (s)
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s
$$

where D is the differential operator D.
Parameters \mathbf{s} (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

compute_differential_operator()
grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw

The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().
estimate_lmax (recompute=False)
Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L . The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L .

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (data, **kwargs)

Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of landmarks. Any transformation of the landmarks can be trivially applied to Y by performing

```
transform_Y = transitions.dot(transform)
```

Parameters Y (array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. n ffeatures must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data

Return type array-like, [n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.
See is_connected () for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

get_edge_list()
Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params()

Get parameters from this object
gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s(ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True
```

gft_windowed (g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C - Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- \mathbf{k} (function) - Gabor kernel. See pygsp.filters.Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C - Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s (ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.
Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns s-Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

interpolate (transform, transitions=None, $Y=$ None $)$
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features])-
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_features]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]

inverse_transform (Y, columns=None)

Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]
is_connected (recompute=False)
Check the strong connectivity of the graph (cached).
It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute ($\mathrm{b} \circ \circ \mathrm{l}$) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed (recompute=False)
Check if the graph has directed edges (cached).
In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.

Parameters recompute (bool) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```


kernel

Synonym for K
kernel_degree
Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)
Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors
landmark_op
Landmark operator
Compute or return the landmark operator
Returns landmark_op - Landmark operator. Can be treated as a diffusion operator between landmarks.

Return type array-like, shape=[n_landmark, n_landmark]
lmax
Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- \mathbf{k} (int) - Index of frequencies

Returns fm - Modulated signal
Return type ndarray
mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot (**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram (**kwargs)
Plot the graph's spectrogram.
See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params (**params)

Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

```
Parameters params (key-value pairs of parameter name and new
values) -
```

Returns
Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem ' FW ' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
subgraph (ind)
```

Create a subgraph given indices.
Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

```
symmetrize_kernel(K)
```

to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph
Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform (Y)

Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]

transitions

Transition matrix from samples to landmarks
Compute the landmark operator if necessary, then return the transition matrix.
Returns transitions - Transition probabilities between samples and landmarks.
Return type array-like, shape=[n_samples, n_landmark]

translate (f, i)

Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft

Return type translate signal

weighted

class graphtools.graphs.kNNPyGSPGraph (data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', thresh=0.0001, n_pca=None, **kwargs)
Bases: graphtools.graphs.kNNGraph, graphtools.base.PyGSPGraph

A
Graph adjacency matrix (the binary version of W).
The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.

D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns K - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]

P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
U
Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().
apply_anisotropy (K)
build_kernel()
Build the KNN kernel.
Build a k nearest neighbors kernel, optionally with alpha decay. Must return a symmetric matrix
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data (Y, \quad knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)
Build a kernel from new input data Y to the self.data

Parameters

- Y(array-like, [n_samples_y, n_features]) - new data for which an affinity matrix is calculated to the existing data. $n _$features must match either the ambient or PCA dimensions
- knn (int or None, optional (default: None)) - If None, defaults to self.knn
- bandwidth (float, callable, or None, optional (default: None)) - If None, defaults to self.bandwidth
- bandwidth_scale (float, optional (default : None)) - Rescaling factor for bandwidth. If None, defaults to self.bandwidth_scale
Returns K_yx - kernel matrix where each row represents affinities of a single sample in Y to all samples in self.data.
Return type array-like, [n_samples_y, n_samples]
Raises ValueError: if the supplied data is the wrong shape
check_weights()
Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> Cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```

compute_differential_operator()
Compute the graph differential operator (cached).
The differential operator is a matrix such that

$$
L=D^{T} D
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad() and div().

The result is cached and accessible by the D property.
See also:
grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)

Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, e, Imax, and mu properties.
Parameters recompute (bool) - Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True
```

```
compute_laplacian(lap_type='combinatorial')
```

Compute a graph Laplacian.
The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2}
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10<G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>>-1e-10<\overline{G.e[0]< < e-10<G.e[-1]< < # Spectrum in [0, 2].}
True
```

d
The degree (the number of neighbors) of each node.
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
diff_op
Synonym for P
$\operatorname{div}(s)$
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s,
$$

where D is the differential operator D.
Parameters s(ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

```
compute_differential_operator()
```

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw
The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().
estimate_1max (recompute=False)
Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L .

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```

extend_to_data (Y)

Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data. Any transformation of self.data can be trivially applied to Y by performing
transform_Y = self.interpolate(transform, transitions)
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, shape=[n_samples_y, self.data.shape[0]]

extract_components()

Split the graph into connected components.
See is_connected() for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
```

(continued from previous page)
\ggg has_sinks $=$ 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
get_edge_list()
Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

get_params ()

Get parameters from this object
gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s (ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < le-10)
True
```

gft_windowed (g,f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C-Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- \mathbf{k} (function) - Gabor kernel. See pygsp.filters.Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized (g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C-Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s (ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray
See also:
compute_differential_operator()
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.
Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns \mathbf{s} - Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

interpolate (transform, transitions=None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_features must match either the ambient or PCA dimensions

Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]
is_connected (recompute=False)
Check the strong connectivity of the graph (cached).
It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```

is_directed (recompute=False)
Check if the graph has directed edges (cached).
In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
Parameters recompute (bool) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```


kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]

knn_tree

KNN tree object (cached)
Builds or returns the fitted KNN tree. TODO: can we be more clever than sklearn when it comes to choosing between KD tree, ball tree and brute force?

Returns knn_tree

Return type sklearn.neighbors.NearestNeighbors

lmax

Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- \mathbf{k} (int) - Index of frequencies

Returns fm - Modulated signal
Return type ndarray
mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot(**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram(**kwargs)
Plot the graph's spectrogram.

See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n _jobs - random_state - verbose Invalid parameters: (these would require modifying the kernel matrix) - knn - knn_max - decay - bandwidth - bandwidth_scale - distance - thresh

Parameters params (key-value pairs of parameter name and new

values) -

Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
subgraph (ind)
```

Create a subgraph given indices.

Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

```
>>> W = np.arange(16).reshape (4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_GG= G.subgraph(ind)
```

symmetrize_kernel (K)
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph

Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError: if Y.shape[1] != self.data.shape[1]
translate (f, i)
Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft

Return type translate signal
weighted

2.3 Base Classes

```
class graphtools.base.Base
```

 Bases: object
 Class that deals with key-word arguments but is otherwise just an object.
set_params (**kwargs)
class graphtools.base.BaseGraph (kernel_symm='+', theta=None, anisotropy=0, gamma=None, initialize $=$ True,$* *$ kwargs)
Bases: graphtools.base.Base
Parent graph class

Parameters

- kernel_symm (string, optional (default: '+')) - Defines method of kernel symmetrization. '+' : additive '*' : multiplicative 'mnn' : min-max MNN symmetrization 'none' : no symmetrization
- theta (float (default: 1)) - Min-max symmetrization constant. $\mathrm{K}=$ theta * $\min (K, K . T)+(1-$ theta $) * \max (K, K . T)$
- anisotropy (float, optional (default: 0))-Level of anisotropy between 0 and 1 (alpha in Coifman \& Lafon, 2006)
- initialize (bool, optional (default : True)) - if false, don't create the kernel matrix.

K
kernel matrix defined as the adjacency matrix with ones down the diagonal
Type array-like, shape=[n_samples, $n _$samples]

kernel

Type synonym for K
P
diffusion operator defined as a row-stochastic form of the kernel matrix
Type array-like, shape $=\left[\mathrm{n} _\right.$samples, n _samples] (cached)
diff_op
Type synonym for P
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]

P

Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the kernel matrix
Abstract method that all child classes must implement. Must return a symmetric matrix
Returns \mathbf{K} - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]

diff_aff

Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]

```
diff_op
```

Synonym for P
get_params()
Get parameters from this object

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: Invalid parameters: (these would require modifying the kernel matrix) - kernel_symm - theta

```
Parameters params (key-value pairs of parameter name and new
values)-
```


Returns

Return type self

```
shortest_path (method='auto', distance=None)
```

Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'|'FW'|'D']) - method to use. Options are 'auto': attempt to choose the best method for the current problem ' FW ' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative \log affinities.

Returns D - D[i,j] gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None

```
symmetrize_kernel(K)
```

to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph
weighted
class graphtools.base.Data (data, $\quad n _p c a=$ None, rank_threshold=None, random_state=None, ***wargs)
Bases: graphtools.base.Base
Parent class that handles the import and dimensionality reduction of data

Parameters

- data (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix. pandas.DataFrame, pandas.SparseDataFrame.
- n_pca (\{int, None, bool, 'auto'\}, optional (default: None)) - number of PC dimensions to retain for graph building. If n_pca in [None, False, 0], uses the original data. If 'auto' or True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- rank_threshold (float, 'auto', optional (default: ‘auto')) - threshold to use when estimating rank for $n _p c a$ in [True, 'auto']. If 'auto', this threshold is s_max * eps * $\max \left(\mathrm{n} _\right.$samples, $\mathrm{n} _$features) where s_max is the maximum singular value of the data matrix and eps is numerical precision. [press2007].
- random_state (int or None, optional (default: None)) - Random state for random PCA

data

Original data matrix
Type array-like, shape=[n_samples,n_features]

n_pca

Type int or None

data_nu

Reduced data matrix
Type array-like, shape=[n_samples,n_pca]
data_pca
sklearn PCA operator
Type sklearn.decomposition.PCA or sklearn.decomposition.TruncatedSVD
get_params()
Get parameters from this object
inverse_transform (Y, columns=None)
Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

```
set_params (**params)
```

Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_pca - random_state

```
Parameters params
(key-value pairs of parameter name and new
    values)-
```


Returns

Return type self
transform (Y)
Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]
class graphtools.base.DataGraph (data, verbose $=$ True, n_{-}jobs $=1, * * k w a r g s$)
Bases: graphtools.base.Data, graphtools.base.BaseGraph
Abstract class for graphs built from a dataset

Parameters

- data (array-like, shape=[n_samples, n_features]) - accepted types: numpy.ndarray, scipy.sparse.spmatrix.
- n_pca (\{int, None, bool, 'auto'\}, optional (default: None)) - number of PC dimensions to retain for graph building. If n_pca in [None,False,0], uses the original data. If True then estimate using a singular value threshold Note: if data is sparse, uses SVD instead of PCA TODO: should we subtract and store the mean?
- rank_threshold (float, 'auto', optional (default: 'auto')) - threshold to use when estimating rank for $n _p c a$ in [True, 'auto']. Note that the default kwarg is None for this parameter. It is subsequently parsed to 'auto' if necessary. If 'auto', this threshold is smax * np.finfo(data.dtype).eps * max(data.shape) where smax is the maximum singular value of the data matrix. For reference, see, e.g. W. Press, S. Teukolsky, W. Vetterling and B. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795.
- random_state (int or None, optional (default: None)) - Random state for random PCA and graph building
- verbose (bool, optional (default: True)) - Verbosity.
- n_jobs (int, optional (default : 1)) - The number of jobs to use for the computation. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For $n_{_}$jobs below -1 , ($n _c p u s+1+n_{-}$jobs) are used. Thus for n_{-}jobs $=-2$, all CPUs but one are used

K
Kernel matrix
Returns K - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
P
Diffusion operator (cached)
Return or calculate the diffusion operator
Returns \mathbf{P} - diffusion operator defined as a row-stochastic form of the kernel matrix
Return type array-like, shape=[n_samples, n_samples]
apply_anisotropy (K)
build_kernel()
Build the kernel matrix
Abstract method that all child classes must implement. Must return a symmetric matrix
Returns K - symmetric matrix with ones down the diagonal with no non-negative entries.
Return type kernel matrix, shape=[n_samples, n_samples]
build_kernel_to_data (Y)
Build a kernel from new input data Y to the self.data
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions

Returns $\mathbf{K}_{-} \mathbf{y x}$ - kernel matrix where each row represents affinities of a single sample in Y to all samples in self.data.
Return type array-like, [n_samples_y, n_samples]

Raises

- ValueError: if this Graph is not capable of extension or
- if the supplied data is the wrong shape
diff_aff
Symmetric diffusion affinity matrix
Return or calculate the symmetric diffusion affinity matrix

$$
A(x, y)=K(x, y)(d(x) d(y))^{-1 / 2}
$$

where d is the degrees (row sums of the kernel.)
Returns diff_aff - symmetric diffusion affinity matrix defined as a doubly-stochastic form of the kernel matrix

Return type array-like, shape=[n_samples, n_samples]
diff_op
Synonym for P
extend_to_data (Y)
Build transition matrix from new data to the graph
Creates a transition matrix such that Y can be approximated by a linear combination of samples in self.data.
Any transformation of self.data can be trivially applied to Y by performing
transform_Y = self.interpolate(transform, transitions)
Parameters Y (array-like, [n_samples_y, n_dimensions]) - new data for which an affinity matrix is calculated to the existing data. n features must match either the ambient or PCA dimensions

Returns transitions - Transition matrix from Y to self.data
Return type array-like, shape=[n_samples_y, self.data.shape[0]]
get_params ()
Get parameters from this object
interpolate (transform, transitions $=$ None, $Y=$ None)
Interpolate new data onto a transformation of the graph data
One of either transitions or Y should be provided

Parameters

- transform (array-like, shape=[n_samples, n_transform_features]) -
- transitions (array-like, optional, shape=[n_samples_y, n_samples]) - Transition matrix from Y (not provided) to self.data
- Y (array-like, optional, shape=[n_samples_y, n_dimensions]) new data for which an affinity matrix is calculated to the existing data. n_{-}features must match either the ambient or PCA dimensions
Returns Y_transform - Transition matrix from Y to self.data
Return type array-like, [n_samples_y, n_features or n_pca]
Raises ValueError: if neither transitions nor Y is provided

inverse_transform (Y, columns=None)

Transform input data Y to ambient data space defined by self.data
Takes data in the same reduced space as self.data_nu and transforms it to be in the same ambient space as self.data.

Parameters

- Y (array-like, shape=[n_samples_y, n_pca]) - n_features must be the same as self.data_nu.
- columns (list-like) - list of integers referring to column indices in the original data space to be returned. Avoids recomputing the full matrix where only a few dimensions of the ambient space are of interest

Returns

Return type Inverse transformed data, shape=[n_samples_y, n_features]
Raises ValueError : if Y.shape[1] != self.data_nu.shape[1]

kernel

Synonym for K

kernel_degree

Weighted degree vector (cached)
Return or calculate the degree vector from the affinity matrix
Returns degrees - Row sums of graph kernel
Return type array-like, shape=[n_samples]
set_params (**params)
Set parameters on this object
Safe setter method - attributes should not be modified directly as some changes are not valid. Valid parameters: - n_jobs - verbose

```
Parameters params (key-value pairs of parameter name and new
values)-
```


Returns

Return type self
shortest_path (method='auto', distance=None)
Find the length of the shortest path between every pair of vertices on the graph

Parameters

- method (string ['auto'/'FW'/'D']) - method to use. Options are 'auto' : attempt to choose the best method for the current problem 'FW' : Floyd-Warshall algorithm. $\mathrm{O}\left[\mathrm{N}^{\wedge} 3\right]$ ' D ' : Dijkstra's algorithm with Fibonacci stacks. $\mathrm{O}\left[(\mathrm{k}+\log (\mathrm{N})) \mathrm{N}^{\wedge} 2\right]$
- distance (\{'constant', 'data', 'affinity'\}, optional (default: 'data')) - Distances along kNN edges. 'constant' gives constant edge lengths. 'data' gives distances in ambient data space. 'affinity' gives distances as negative log affinities.
Returns $\mathbf{D}-\mathrm{D}[\mathrm{i}, \mathrm{j}]$ gives the shortest distance from point i to point j along the graph. If no path exists, the distance is np.inf
Return type np.ndarray, float, shape $=[\mathrm{N}, \mathrm{N}]$

Notes

Currently, shortest paths can only be calculated on kNNGraphs with decay=None
symmetrize_kernel (K)
to_igraph (attribute='weight', **kwargs)
Convert to an igraph Graph
Uses the igraph.Graph constructor

Parameters

- attribute (str, optional (default: "weight"))-
- kwargs (additional arguments for igraph. Graph)-

```
to_pickle(path)
```

Save the current Graph to a pickle.
Parameters path (str) - File path where the pickled object will be stored.

```
to_pygsp (**kwargs)
```

Convert to a PyGSP graph
For use only when the user means to create the graph using the flag use_pygsp=True, and doesn't wish to recompute the kernel. Creates a graphtools.graphs.TraditionalGraph with a precomputed affinity matrix which also inherits from pygsp.graphs.Graph.

Parameters kwargs - keyword arguments for graphtools.Graph

Returns G

Return type graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

transform (Y)

Transform input data Y to reduced data space defined by self.data
Takes data in the same ambient space as self.data and transforms it to be in the same reduced space as self.data_nu.

Parameters Y (array-like, shape=[n_samples_y, n_features]) - n_features must be the same as self.data.

Returns

Return type Transformed data, shape=[n_samples_y, n_pca]
Raises ValueError : if Y.shape[1] != self.data.shape[1]
weighted
class graphtools.base.PyGSPGraph (lap_type='combinatorial', coords=None, plotting=None, **kwargs)
Bases: pygsp.graphs.graph.Graph, graphtools.base.Base
Interface between BaseGraph and PyGSP.
All graphs should possess these matrices. We inherit a lot of functionality from pygsp.graphs.Graph.
There is a lot of overhead involved in having both a weight and kernel matrix
A
Graph adjacency matrix (the binary version of W).
The adjacency matrix defines which edges exist on the graph. It is represented as an N-by-N matrix of booleans. $A_{i, j}$ is True if $W_{i, j}>0$.

D
Differential operator (for gradient and divergence).
Is computed by compute_differential_operator().
K
Kernel matrix
Returns \mathbf{K} - kernel matrix defined as the adjacency matrix with ones down the diagonal
Return type array-like, shape=[n_samples, n_samples]
U
Fourier basis (eigenvectors of the Laplacian).
Is computed by compute_fourier_basis().

```
check_weights()
```

Check the characteristics of the weights matrix.

Returns

- A dict of bools containing informations about the matrix
- has_inf_val (bool) - True if the matrix has infinite values else false
- has_nan_value (bool) - True if the matrix has a "not a number" value else false
- is_not_square (bool) - True if the matrix is not square else false
- diag_is_not_zero (bool) - True if the matrix diagonal has not only zeros else false

Examples

```
>>> W = np.arange(4).reshape (2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> CW == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True
```


compute_differential_operator()

Compute the graph differential operator (cached).
The differential operator is a matrix such that

$$
L=D^{T} D,
$$

where D is the differential operator and L is the graph Laplacian. It is used to compute the gradient and the divergence of a graph signal, see grad () and $\operatorname{div}()$.

The result is cached and accessible by the D property.
See also:
grad () compute the gradient
div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True
```

compute_fourier_basis (recompute=False)
Compute the Fourier basis of the graph (cached).
The result is cached and accessible by the U, e, Imax, and mu properties.
Parameters recompute (bool)-Force to recompute the Fourier basis if already existing.

Notes

'G.compute_fourier_basis()' computes a full eigendecomposition of the graph Laplacian L such that:

$$
L=U \Lambda U^{*}
$$

where Λ is a diagonal matrix of eigenvalues and the columns of U are the eigenvectors.
G.e is a vector of length G.N containing the Laplacian eigenvalues. The largest eigenvalue is stored in G.lmax. The eigenvectors are stored as column vectors of $G . U$ in the same order that the eigenvalues. Finally, the coherence of the Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

```
>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True
```

compute_laplacian (lap_type='combinatorial')
Compute a graph Laplacian.

The result is accessible by the L attribute.
Parameters lap_type ('combinatorial', 'normalized') - The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

$$
L=D-W
$$

where W is the weight matrix and D the degree matrix, and the normalized Laplacian is defined as

$$
L=I-D^{-1 / 2} W D^{-1 / 2},
$$

where I is the identity matrix.

Examples

```
>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10<G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>>-1e-10<\overline{G.e[0]<1e-10<G.e[-1]<2 # Spectrum in [0, 2].}
True
```

d
The degree (the number of neighbors) of each node.
div (s)
Compute the divergence of a graph signal.
The divergence of a signal s is defined as

$$
y=D^{T} s
$$

where D is the differential operator D.

Parameters \mathbf{s} (ndarray) - Signal of length G.Ne/2 living on the edges (non-directed graph).
Returns s_div - Divergence signal of length G.N living on the nodes.
Return type ndarray

See also:

```
compute_differential_operator()
```

grad() compute the gradient

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)
```

dw
The weighted degree (the sum of weighted edges) of each node.
e
Eigenvalues of the Laplacian (square of graph frequencies).
Is computed by compute_fourier_basis().

estimate_lmax (recompute=False)

Estimate the Laplacian's largest eigenvalue (cached).
The result is cached and accessible by the Imax property.
Exact value given by the eigendecomposition of the Laplacian, see compute_fourier_basis(). That estimation is much faster than the eigendecomposition.

Parameters recompute (boolean) - Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance, then increases the calculated largest eigenvalue by 1 percent. For much of the PyGSP machinery, we need to approximate wavelet kernels on an interval that contains the spectrum of L. The only cost of using a larger interval is that the polynomial approximation over the larger interval may be a slightly worse approximation on the actual spectrum. As this is a very mild effect, it is not necessary to obtain very tight bounds on the spectrum of L .

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92
```


extract_components()

Split the graph into connected components.
See is_connected() for the method used to determine connectedness.
Returns graphs - A list of graph structures. Each having its own node list and weight matrix. If the graph is directed, add into the info parameter the information about the source nodes and the sink nodes.

Return type list

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []
```

```
get_edge_list()
```

Return an edge list, an alternative representation of the graph.
The weighted adjacency matrix is the canonical form used in this package to represent a graph as it is the easiest to work with when considering spectral methods.

Returns

- \mathbf{v} _in (vector of int)
- v_out (vector of int)
- weights (vector of float)

Examples

```
>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))
```

gft (s)
Compute the graph Fourier transform.
The graph Fourier transform of a signal s is defined as

$$
\hat{s}=U^{*} s
$$

where U is the Fourier basis attr: U and U^{*} denotes the conjugate transpose or Hermitian transpose of U.
Parameters s(ndarray) - Graph signal in the vertex domain.
Returns s_hat - Representation of s in the Fourier domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True
```

gft_windowed (g, f, lowmemory=True)
Windowed graph Fourier transform.

Parameters

- \mathbf{g} (ndarray or Filter) - Window (graph signal or kernel).
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory (default=True).

Returns C - Coefficients.
Return type ndarray
gft_windowed_gabor (s, k)
Gabor windowed graph Fourier transform.

Parameters

- s (ndarray) - Graph signal in the vertex domain.
- \mathbf{k} (function) - Gabor kernel. See pygsp.filters.Gabor.

Returns s-Vertex-frequency representation of the signals.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)
```

gft_windowed_normalized(g, f, lowmemory=True)
Normalized windowed graph Fourier transform.

Parameters

- g(ndarray) - Window.
- \mathbf{f} (ndarray) - Graph signal in the vertex domain.
- lowmemory (bool) - Use less memory. $($ default $=$ True $)$

Returns C - Coefficients.
Return type ndarray
$\operatorname{grad}(s)$
Compute the gradient of a graph signal.
The gradient of a signal s is defined as

$$
y=D s
$$

where D is the differential operator D.
Parameters s(ndarray) - Signal of length G.N living on the nodes.
Returns s_grad - Gradient signal of length G.Ne/2 living on the edges (non-directed graph).
Return type ndarray

See also:

```
compute_differential_operator()
```

div() compute the divergence

Examples

```
>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True
```

igft (s_hat)
Compute the inverse graph Fourier transform.
The inverse graph Fourier transform of a Fourier domain signal \hat{s} is defined as

$$
s=U \hat{s}
$$

where U is the Fourier basis U.
Parameters s_hat (ndarray) - Graph signal in the Fourier domain.
Returns s-Representation of s_hat in the vertex domain.
Return type ndarray

Examples

```
>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True
```

is_connected (recompute=False)
Check the strong connectivity of the graph (cached).
It uses DFS travelling on graph to ensure that each node is visited. For undirected graphs, starting at any vertex and trying to access all others is enough. For directed graphs, one needs to check that a random vertex is accessible by all others and can access all others. Thus, we can transpose the adjacency matrix and compute again with the same starting point in both phases.

Parameters recompute (bool) - Force to recompute the connectivity if already known.
Returns connected - True if the graph is connected.
Return type bool

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()
```


is_directed (recompute=False)

Check if the graph has directed edges (cached).
In this framework, we consider that a graph is directed if and only if its weight matrix is non symmetric.
Parameters recompute (bool) - Force to recompute the directedness if already known.
Returns directed - True if the graph is directed.
Return type bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

```
>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()
```


lmax

Largest eigenvalue of the graph Laplacian.
Can be exactly computed by compute_fourier_basis() or approximated by estimate_lmax().
modulate (f, k)
Modulate the signal f to the frequency k.

Parameters

- \mathbf{f} (ndarray) - Signal (column)
- \mathbf{k} (int) - Index of frequencies

Returns fm - Modulated signal

Return type ndarray

mu
Coherence of the Fourier basis.
Is computed by compute_fourier_basis().
plot (**kwargs)
Plot the graph.
See pygsp.plotting.plot_graph().
plot_signal (signal, **kwargs)
Plot a signal on that graph.
See pygsp.plotting.plot_signal().
plot_spectrogram (**kwargs)
Plot the graph's spectrogram.
See pygsp.plotting.plot_spectrogram().
set_coordinates (kind='spring', **kwargs)
Set node's coordinates (their position when plotting).

Parameters

- kind (string or array-like) - Kind of coordinates to generate. It controls the position of the nodes when plotting the graph. Can either pass an array of size Nx2 or Nx3 to set the coordinates manually or the name of a layout algorithm. Available algorithms: community2D, random2D, random3D, ring2D, line1D, spring. Default is 'spring'.
- kwargs (dict) - Additional parameters to be passed to the Fruchterman-Reingold forcedirected algorithm when kind is spring.

Examples

```
>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()
```

set_params (**kwargs)
subgraph (ind)

Create a subgraph given indices.
Parameters ind (list) - Nodes to keep
Returns sub_G - Subgraph
Return type Graph

Examples

```
>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)
```

translate (f, i)
Translate the signal f to the node i.

Parameters

- \mathbf{f} (ndarray) - Signal
- i (int) - Indices of vertex

Returns ft
Return type translate signal

2.4 Utilities

graphtools.utils.check_between (v_min, v_max, **params)
Checks parameters are in a specified range

Parameters

- v_min(float, minimum allowed value (inclusive))-
- v_max (float, maximum allowed value (inclusive))-
- params (object) - Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters
graphtools.utils.check_greater (x, **params)
Check that parameters are greater than x as expected
Parameters \mathbf{x} (excepted boundary) - Checks not run if parameters are greater than x
Raises ValueError : unacceptable choice of parameters
graphtools.utils.check_if_not (x, *checks, **params)
Run checks only if parameters are not equal to a specified value

Parameters

- \mathbf{x} (excepted value) - Checks not run if parameters equal x
- checks (function) - Unnamed arguments, check functions to be run
- params (object) - Named arguments, parameters to be checked

Raises ValueError : unacceptable choice of parameters
graphtools.utils.check_in(choices, **params)
Checks parameters are in a list of allowed parameters

Parameters

- choices (array-like, accepted values)-
- params (object) - Named arguments, parameters to be checked

Raises ValueError: unacceptable choice of parameters

```
graphtools.utils.check_int(**params)
```

Check that parameters are integers as expected
Raises ValueError : unacceptable choice of parameters

```
graphtools.utils.check_positive(**params)
```

Check that parameters are positive as expected
Raises ValueError: unacceptable choice of parameters

```
graphtools.utils.dense_nonzero_discrete(*args, **kwargs)
graphtools.utils.dense_set_diagonal(*args, **kwargs)
graphtools.utils.elementwise_maximum(*args, **kwargs)
graphtools.utils.elementwise_minimum(*args, **kwargs)
graphtools.utils.if_sparse(*args, **kwargs)
graphtools.utils.is_Anndata(X)
graphtools.utils.is_DataFrame( }X\mathrm{ )
graphtools.utils.is_SparseDataFrame(X)
graphtools.utils.matrix_is_equivalent(*args, **kwargs)
graphtools.utils.nonzero_discrete(*args, **kwargs)
graphtools.utils.set_diagonal(*args, **kwargs)
graphtools.utils.set_submatrix(*args, **kwargs)
graphtools.utils.sparse_maximum(*args, **kwargs)
graphtools.utils.sparse_minimum(*args, **kwargs)
graphtools.utils.sparse_nonzero_discrete(*args, **kwargs)
graphtools.utils.sparse_set_diagonal(*args, **kwargs)
graphtools.utils.to_array(*args, **kwargs)
```

To use graphtools, create a graphtools.Graph class:

```
from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'])
K = G.kernel
P = G.diff_op
G = graphtools.Graph(digits['data'], n_landmark=300)
L = G.landmark_op
```

To use graphtools with pygsp, create a graphtools.Graph class with use_pygsp=True:

```
from sklearn import datasets
import graphtools
digits = datasets.load_digits()
G = graphtools.Graph(digits['data'], use_pygsp=True)
N}=\textrm{G}\cdot\textrm{N
W = G.W
basis = G.compute_fourier_basis()
```

If you have any questions or require assistance using graphtools, please contact us at https://krishnaswamylab.org/ get-help

Bibliography

[press2007] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795.

Python Module Index

g

graphtools.api, 5
graphtools.base, 112
graphtools.graphs, 7
graphtools.utils, 129

A

A (graphtools.base.PyGSPGraph attribute), 120
A (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 86
A (graphtools.graphs.kNNPyGSPGraph attribute), 99
A (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 19
A (graphtools.graphs.MNNPyGSPGraph attribute), 32
A (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 53
A (graphtools.graphs.TraditionalPyGSPGraph attribute), 65
apply_anisotropy() (graphtools.base.BaseGraph method), 113
apply_anisotropy() (graphtools.base.DataGraph method), 116
apply_anisotropy()
tools.graphs.kNNGraph method), 79
apply_anisotropy()
tools.graphs.kNNLandmarkGraph method), 82
apply_anisotropy() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 87
apply_anisotropy()
tools.graphs.kNNPyGSPGraph 100
apply_anisotropy() (graphtools.graphs.LandmarkGraph method), 8
apply_anisotropy() (graphtools.graphs.MNNGraph method), 12
apply_anisotropy()
tools graphs.MNNLandmarkGraph 16
apply_anisotropy () (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 20
apply_anisotropy()
tools.graphs.MNNPyGSPGraph
(graphmethod),

33
apply_anisotropy() (graphtools.graphs.TraditionalGraph method), 45
apply_anisotropy() (graphtools.graphs.TraditionalLandmarkGraph method), 49
apply_anisotropy() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 53
apply_anisotropy() (graphtools.graphs.TraditionalPyGSPGraph method), 66

B
Base (class in graphtools.base), 112
BaseGraph (class in graphtools.base), 112
build_kernel() (graphtools.base.BaseGraph
method), 113
build_kernel() (graphtools.base.DataGraph
method), 117
build_kernel() (graphtools.graphs.kNNGraph method), 79
build_kernel() (graphtools.graphs.kNNLandmarkGraph method), 82
build_kernel()
(graph-
tools.graphs.kNNLandmarkPyGSPGraph method), 87
build_kernel() (graphtools.graphs.kNNPyGSPGraph method), 100
build_kernel() (graphtools.graphs.LandmarkGraph method), 8
build_kernel() (graphtools.graphs.MNNGraph method), 12
build_kernel() (graphtools.graphs.MNNLandmarkGraph method), 16

build_kernel() tools.graphs.MNNLandmarkPyGSPGraph method), 20	tools.graphs.TraditionalPyGSPGraph method), 66 build_landmark_op() (graph-
build_kernel() (graph-	tools.graphs.kNNLandmarkGraph method),
tools.graphs.MNNPyGSPGraph method), 33	build_landmark_op() (graph-
build_kernel() (graph- tools.graphs.TraditionalGraph method),	tools.graphs.kNNLandmarkPyGSPGraph method), 87
45	landmark_op() (g
build_kernel()	tools.graphs.LandmarkGraph method), 8
tools.graphs.TraditionalLandmarkGraph method), 49	build_landmark_op() (graphtools.graphs.MNNLandmarkGraph method),
build_kernel()	16
tools.graphs.TraditionalLandmarkPyGSPGraph method), 53	build_landmark_op() (graphtools.graphs.MNNLandmarkPyGSPGraph
build_kernel()	method), 20
tools.graphs.TraditionalPyGSPGraph method), 66	build_landmark_op() (graphtools.graphs.TraditionalLandmarkGraph
build_kernel_to_data() (graphtools.base.DataGraph method), 117	method), 49 build_landmark_op() (graph-
build_kernel_to_data() (graphtools.graphs.kNNGraph method), 79	tools.graphs.TraditionalLandmarkPyGSPGraph method), 54
build_kernel_to_data() (graphtools.graphs.kNNLandmarkGraph method), 82	check_between () (in module graphtools.utils), 129
build_kernel_to_data() tools.graphs.kNNLandmarkPyGSPGraph method), 87	check_greater() (in module graphtools.utils), 129 check_if_not() (in module graphtools.utils), 129 check_in () (in module graphtools.utils), 129
```build_kernel_to_data() (graph- tools.graphs.kNNPyGSPGraph method), 100```	```check_int() (in module graphtools.utils), 129 check_positive() (in module graphtools.utils), 129 check_weights() (graphtools.base.PyGSPGraph```
build_kernel_to_data() (graph- tools.graphs.LandmarkGraph method), 8	$\begin{aligned} & \text { method), } 120 \\ & \text { check_weights() (graph- } \end{aligned}$
build_kernel_to_data()   (graphtools.graphs.MNNGraph method), 12	tools.graphs.kNNLandmarkPyGSPGraph method), 87
build_kernel_to_data()   (graphtools.graphs.MNNLandmarkGraph method), 16	check_weights() (graph-   tools.graphs.kNNPyGSPGraph    100 method),
build_kernel_to_data() tools.graphs.MNNLandmarkPyGSPGraph method), 20	check_weights()   tools.graphs.MNNLandmarkPyGSPGraph method), 20
build_kernel_to_data() tools.graphs.MNNPyGSPGraph 33	check_weights() (graph- tools.graphs.MNNPyGSPGraph method), 33
build_kernel_to_data()    tools.graphs.TraditionalGraph (graph-   45	check_weights()   (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 54
build_kernel_to_data() tools.graphs.TraditionalLandmarkGraph method), 49	check_weights() (graphtools.graphs.TraditionalPyGSPGraph method), 66
build_kernel_to_data() tools.graphs.TraditionalLandmarkPyGSPGraph method), 53	```clusters (graphtools.graphs.kNNLandmarkGraph at- tribute), 83 clusters(graphtools.graphs.kNNLandmarkPyGSPGraph```
build_kernel_to_data() (graph-	attribute), 88

    tools.graphs.MNNLandmarkPyGSPGraph
    method), 20
    tools.graphs.MNNPyGSPGraph
    method),
    (graph-
    method),
    (graph-
    tools.graphs.TraditionalLandmarkGraph
    method), 49
    ools graphs TraditionalLandmarkPyGSPGrap
    method), 53
    tools.graphs.TraditionalPyGSPGraph method),
    66
    tools.base.DataGraph method), 117
    tools.graphs.kNNGraph method), 79
    tools.graphs.kNNLandmarkGraph
    kernel_to_data()
    tools.graphs.kNNLandmarkPyGSPGraph
    kernel_to_data()
    (graph-
    method),
    (graph-
        (graph-
    (graph-
    tools.graphs.MNNLandmarkGraph method),
    kernel_to_data()
    method), 20
    tools.graphs.MNNPyGSPGraph
    33
tools.graphs.TraditionalGraph
tools.graphs.TraditionalGraph method),
kernel_to_data() (graph-
tools.graphs.TraditionalLandmarkGraph
method), 49
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 53
build_kernel_to_data() (graph-

```
```

clusters (graphtools.graphs.LandmarkGraph at- compute_laplacian() (graph-

```
```

clusters (graphtools.graphs.LandmarkGraph at- compute_laplacian() (graph-
tribute), 8,9 tools.graphs.kNNPyGSPGraph
tribute), 8,9 tools.graphs.kNNPyGSPGraph
102
102
compute_laplacian() (graph-
compute_laplacian() (graph-
clusters(graphtools.graphs.MNNLandmarkPyGSPGraph tools.graphs.MNNLandmarkPyGSPGraph
clusters(graphtools.graphs.MNNLandmarkPyGSPGraph tools.graphs.MNNLandmarkPyGSPGraph
attribute),21 method),22
attribute),21 method),22
clusters(graphtools.graphs.TraditionalLandmarkGraphcompute_laplacian() (graph-
clusters(graphtools.graphs.TraditionalLandmarkGraphcompute_laplacian() (graph-
attribute),49 tools.graphs.MNNPyGSPGraph method),
attribute),49 tools.graphs.MNNPyGSPGraph method),
clusters(graphtools.graphs.TraditionalLandmarkPyGSPGraph }3
clusters(graphtools.graphs.TraditionalLandmarkPyGSPGraph }3
attribute), 54
attribute), 54
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.base.PyGSPGraph method), 120
tools.base.PyGSPGraph method), 120
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
tools.graphs.kNNLandmarkPyGSPGraph
method), }8
method), }8
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.graphs.kNNPyGGPGraph method),101
tools.graphs.kNNPyGGPGraph method),101
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
tools.graphs.MNNLandmarkPyGSPGraph
method), 21
method), 21
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.graphs.MNNPyGSPGraph method),
tools.graphs.MNNPyGSPGraph method),
33
33
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 54
method), 54
compute_differential_operator() (graph-
compute_differential_operator() (graph-
tools.graphs.TraditionalPyGSPGraph method),
tools.graphs.TraditionalPyGSPGraph method),
67
67
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
tools.base.PyGSPGraph method),121
tools.base.PyGSPGraph method),121
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
tools.graphs.kNNLandmarkPyGSPGraph
method), }8
method), }8
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
101
101
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
tools.graphs.MNNLandmarkPyGSPGraph
method),21
method),21
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
tools.graphs.MNNPyGSPGraph
tools.graphs.MNNPyGSPGraph
34
34
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.TraditionalLandmarkPyGSPGraph
method),55
method),55
compute_fourier_basis() (graph-
compute_fourier_basis() (graph-
tools.graphs.TraditionalPyGSPGraph method),
tools.graphs.TraditionalPyGSPGraph method),
67
67
compute_laplacian()}\mathrm{ tools.base.PyGSPGraph method),122 (graph-
compute_laplacian()}\mathrm{ tools.base.PyGSPGraph method),122 (graph-
compute_laplacian()
compute_laplacian()
compute_laplacian()
compute_laplacian()
(graph-
(graph-
tools.graphs.kNNLandmarkPyGSPGraph
tools.graphs.kNNLandmarkPyGSPGraph
method), }8
method), }8
method),
method),
compute_laplacian()
compute_laplacian()
(graph-
(graph-
clusters (graphtools.graphs.MNNLandmarkGraph

```
clusters (graphtools.graphs.MNNLandmarkGraph
```

```
 attribute),16 compute_laplacian()
```

    attribute),16 compute_laplacian()
                                    method),
                                    method),
    D
D
D (graphtools.base.PyGSPGraph attribute),120
D (graphtools.base.PyGSPGraph attribute),120
d (graphtools.base.PyGSPGraph attribute), }12
d (graphtools.base.PyGSPGraph attribute), }12
D (graphtools.graphs.kNNLandmarkPyGSPGraph
D (graphtools.graphs.kNNLandmarkPyGSPGraph
attribute), }8
attribute), }8
d (graphtools.graphs.kNNLandmarkPyGSPGraph
d (graphtools.graphs.kNNLandmarkPyGSPGraph
attribute), }9
attribute), }9
D (graphtools.graphs.kNNPyGSPGraph attribute), }9
D (graphtools.graphs.kNNPyGSPGraph attribute), }9
d (graphtools.graphs.kNNPyGSPGraph attribute),102
d (graphtools.graphs.kNNPyGSPGraph attribute),102
D (graphtools.graphs.MNNLandmarkPyGSPGraph at-
D (graphtools.graphs.MNNLandmarkPyGSPGraph at-
tribute), 20
tribute), 20
d (graphtools.graphs.MNNLandmarkPyGSPGraph at-
d (graphtools.graphs.MNNLandmarkPyGSPGraph at-
tribute), 23
tribute), 23
D (graphtools.graphs.MNNPyGSPGraph attribute), 32
D (graphtools.graphs.MNNPyGSPGraph attribute), 32
d (graphtools.graphs.MNNPyGSPGraph attribute), 35
d (graphtools.graphs.MNNPyGSPGraph attribute), 35
D (graphtools.graphs.TraditionalLandmarkPyGSPGraph
D (graphtools.graphs.TraditionalLandmarkPyGSPGraph
attribute), 53
attribute), 53
d (graphtools.graphs.TraditionalLandmarkPyGSPGraph
d (graphtools.graphs.TraditionalLandmarkPyGSPGraph
attribute),56
attribute),56
D (graphtools.graphs.TraditionalPyGSPGraph attribute),
D (graphtools.graphs.TraditionalPyGSPGraph attribute),
6 6
6 6
d (graphtools.graphs.TraditionalPyGSPGraph attribute),
d (graphtools.graphs.TraditionalPyGSPGraph attribute),
6 9
6 9
Dat a (class in graphtools.base),114
Dat a (class in graphtools.base),114
data (graphtools.base.Data attribute),115
data (graphtools.base.Data attribute),115
data_nu (graphtools.base.Data attribute), 115
data_nu (graphtools.base.Data attribute), 115
data_pca (graphtools.base.Data attribute), 115
data_pca (graphtools.base.Data attribute), 115
DataGraph (class in graphtools.base),116
DataGraph (class in graphtools.base),116
dense_nonzero_discrete() (in module graph-
dense_nonzero_discrete() (in module graph-
tools.utils), }12
tools.utils), }12
dense_set_diagonal() (in module graph-
dense_set_diagonal() (in module graph-
tools.utils), 130
tools.utils), 130
diff_aff (graphtools.base.BaseGraph attribute), 113
diff_aff (graphtools.base.BaseGraph attribute), 113
diff_aff(graphtools.base.DataGraph attribute), 117
diff_aff(graphtools.base.DataGraph attribute), 117
diff_aff (graphtools.graphs.kNNGraph attribute),79
diff_aff (graphtools.graphs.kNNGraph attribute),79
diff_aff (graphtools.graphs.kNNLandmarkGraph at-
diff_aff (graphtools.graphs.kNNLandmarkGraph at-
tribute), }8

```
 tribute), }8
```

diff_aff(graphtools.graphs.kNNLandmarkPyGSPGrapldiv () (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 90 method), 23
diff_aff (graphtools.graphs.kNNPyGSPGraph div() (graphtools.graphs.MNNPyGSPGraph method), attribute), 10336
diff_aff (graphtools.graphs.LandmarkGraph at- div() (graphtools.graphs.TraditionalLandmarkPyGSPGraph tribute), 9 method), 56
diff_aff (graphtools.graphs.MNNGraph attribute), div() (graphtools.graphs.TraditionalPyGSPGraph 13
diff_aff (graphtools.graphs.MNNLandmarkGraph dw (graphtools.base.PyGSPGraph attribute), 123 attribute), 16 dw (graphtools.graphs.kNNLandmarkPyGSPGraph atdiff_aff(graphtools.graphs.MNNLandmarkPyGSPGraph tribute), 91 attribute), 23 dw (graphtools.graphs.kNNPyGSPGraph attribute), 103
diff_aff (graphtools.graphs.MNNPyGSPGraph at- dw (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 35 tribute), 24
diff_aff (graphtools.graphs.TraditionalGraph at- dw (graphtools.graphs.MNNPyGSPGraph attribute), 36 tribute), 46 dw (graphtools.graphs.TraditionalLandmarkPyGSPGraph
diff_aff(graphtools.graphs.TraditionalLandmarkGraph attribute), 57
attribute), $50 \quad$ dw (graphtools.graphs.TraditionalPyGSPGraph at-
diff_aff(graphtools.graphs.TraditionalLandmarkPyGSPGraph tribute), 70 attribute), 56
diff_aff (graphtools.graphs.TraditionalPyGSPGraph attribute), 69
diff_op (graphtools.base.BaseGraph attribute), 112, e (graphtools.base.PyGSPGraph attribute), 123 113
diff_op (graphtools.base.DataGraph attribute), 117
diff_op (graphtools.graphs.kNNGraph attribute), 79
diff_op (graphtools.graphs.kNNLandmarkGraph attribute), 83 (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 91
e (graphtools.graphs.kNNPyGSPGraph attribute), 103
e (graphtools.graphs.MNNLandmarkPyGSPGraph at-
e (graphtools.graphs.MNNPyGSPGraph attribute), 36
diff_op (graphtools.graphs.kNNLandmarkPyGSPGraph e (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 90 attribute), 57
diff_op (graphtools.graphs.kNNPyGSPGraph at- e (graphtools.graphs.TraditionalPyGSPGraph attribute), tribute), 103
diff_op (graphtools.graphs.LandmarkGraph at- elementwise_maximum() (in module graphtribute), 9 tools.utils), 130
diff_op (graphtools.graphs.MNNGraph attribute), 13 elementwise_minimum() (in module graph-
diff_op (graphtools.graphs.MNNLandmarkGraph attribute), 17 tools.utils), 130
diff_op (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 23
diff_op (graphtools.graphs.MNNPyGSPGraph attribute), 36
diff_op (graphtools.graphs.TraditionalGraph at- estimate_lmax() (graphtribute), 46
tools.graphs.kNNPyGSPGraph method),
diff_op (graphtools.graphs.TraditionalLandmarkGraph 103 attribute), 50 estimate_lmax ()
(graph-
diff_op (graphtools.graphs.TraditionalLandmarkPyGSPGraph tools.graphs.MNNLandmarkPyGSPGraph attribute), 56 method), 24
diff_op (graphtools.graphs.TraditionalPyGSPGraph estimate_lmax() (graphattribute), 69
div() (graphtools.base.PyGSPGraph method), 122 tools.graphs.MNNPyGSPGraph method),
div() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 90
div() (graphtools.graphs.kNNPyGSPGraph method), 103
tools.graphs.TraditionalPyGSPGraph method),
70
extend_to_data() (graphtools.base.DataGraph
method),117
extend_to_data() (graphtools.graphs.kNNGraph
method),}7
extend_to_data()
tools.graphs.kNNLandmarkGraph method),
83
extend_to_data() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method),91
extend_to_data() (graph-
tools.graphs.kNNPyGSPGraph method),
104
extend_to_data() (graph-
tools.graphs.LandmarkGraph method), }
extend_to_data() (graphtools.graphs.MNNGraph
method),13
extend_to_data() (graph-
tools.graphs.MNNLandmarkGraph method),
1 7
extend_to_data() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method),24
extend_to_data() (graph-
tools.graphs.MNNPyGSPGraph method),
37
extend_to_data() (graph-
tools.graphs.TraditionalGraph method),
46
extend_to_data() (graph-
tools.graphs.TraditionalLandmarkGraph
method),50
extend_to_data()
(graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method),58
extend_to_data()
(graph-
tools.graphs.TraditionalPyGSPGraph method),
70
extract_components()
tools.base.PyGSPGraph method),123
extract_components() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method),92
extract_components()
tools.graphs.kNNPyGSPGraph
104
extract_components() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), }2
extract_components() (graph-
tools.graphs.MNNPyGSPGraph method),
(graph-

```
```

```
estimate_lmax() (graph-
```

```
```

estimate_lmax() (graph-

```
(graph-
method),
(graphmethod),
```

    3 7
    ```
 3 7
extract_components()
extract_components()
 (graph-
 (graph-
 tools.graphs.TraditionalLandmarkPyGSPGraph
 tools.graphs.TraditionalLandmarkPyGSPGraph
 method), 58
 method), 58
extract_components() (graph-
extract_components() (graph-
 tools.graphs.TraditionalPyGSPGraph method),
 tools.graphs.TraditionalPyGSPGraph method),
 71
 71
 F
 F
 from_igraph() (in module graphtools.api), 7
 from_igraph() (in module graphtools.api), 7
G
G
get_edge_list() (graphtools.base.PyGSPGraph
get_edge_list() (graphtools.base.PyGSPGraph
 method), 124
 method), 124
get_edge_list() (graph-
get_edge_list() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 tools.graphs.kNNLandmarkPyGSPGraph
 method), }9
 method), }9
get_edge_list() (graph-
get_edge_list() (graph-
 tools.graphs.kNNPyGSPGraph method),
 tools.graphs.kNNPyGSPGraph method),
 105
 105
get_edge_list() (graph-
get_edge_list() (graph-
 tools.graphs.MNNLandmarkPyGSPGraph
 tools.graphs.MNNLandmarkPyGSPGraph
 method), }2
 method), }2
get_edge_list() (graph-
get_edge_list() (graph-
 tools.graphs.MNNPyGSPGraph method),
 tools.graphs.MNNPyGSPGraph method),
 37
 37
get_edge_list() (graph-
get_edge_list() (graph-
 tools.graphs.TraditionalLandmarkPyGSPGraph
 tools.graphs.TraditionalLandmarkPyGSPGraph
 method),58
 method),58
get_edge_list() (graph-
get_edge_list() (graph-
 tools.graphs.TraditionalPyGSPGraph method),
 tools.graphs.TraditionalPyGSPGraph method),
 71
 71
get_params() (graphtools.base.BaseGraph method),
get_params() (graphtools.base.BaseGraph method),
 113
 113
get_params() (graphtools.base.Data method),115
get_params() (graphtools.base.Data method),115
get_params() (graphtools.base.DataGraph method),
get_params() (graphtools.base.DataGraph method),
 1 1 7
 1 1 7
get_params() (graphtools.graphs.kNNGraph
get_params() (graphtools.graphs.kNNGraph
 method), 80
 method), 80
get_params() (graph-
get_params() (graph-
 tools.graphs.kNNLandmarkGraph method),
 tools.graphs.kNNLandmarkGraph method),
 84
 84
get_params() (graph-
get_params() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 tools.graphs.kNNLandmarkPyGSPGraph
 method), }9
 method), }9
get_params() (graphtools.graphs.kNNPyGSPGraph
get_params() (graphtools.graphs.kNNPyGSPGraph
 method), 105
 method), 105
get_params() (graphtools.graphs.LandmarkGraph
get_params() (graphtools.graphs.LandmarkGraph
 method), }
 method), }
get_params() (graphtools.graphs.MNNGraph
get_params() (graphtools.graphs.MNNGraph
 method), 13
 method), 13
get_params() (graph-
get_params() (graph-
 tools.graphs.MNNLandmarkGraph method),
 tools.graphs.MNNLandmarkGraph method),
 17
```

    17
    ```
```

get_params() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), }2
get_params() (graphtools.graphs.MNNPyGSPGraph
method), 38
get_params() (graphtools.graphs.TraditionalGraph
method),46
get_params() (graph-
tools.graphs.TraditionalLandmarkGraph
method),50
get_params() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method),59
get_params() (graph-
tools.graphs.TraditionalPyGSPGraph method),
71
gft()(graphtools.base.PyGSPGraph method), 124
gft() (graphtools.graphs.kNNLandmarkPyGSPGraph
method), }9
gft() (graphtools.graphs.kNNPyGSPGraph method),
105
gft()(graphtools.graphs.MNNLandmarkPyGSPGraph
method),25
gft() (graphtools.graphs.MNNPyGSPGraph method),
38
gft()(graphtools.graphs.TraditionalLandmarkPyGSPGrap
method), 59
gft() (graphtools.graphs.TraditionalPyGSPGraph
method), }7
gft_windowed() (graphtools.base.PyGSPGraph
method),125
gft_windowed()
(graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), }9
gft_windowed() (graph-
tools.graphs.kNNPyGSPGraph method),
105
gft_windowed() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 26
gft_windowed() (graph-
tools.graphs.MNNPyGSPGraph
method),
38
gft_windowed() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 59
gft_windowed() (graph-
tools.graphs.TraditionalPyGSPGraph method),
72
gft_windowed_gabor() (graph-
tools.base.PyGSPGraph method), }12
gft_windowed_gabor() (graph
tools.graphs.kNNLandmarkPyGSPGraph

```
gft_windowed_gabor()
```

gft_windowed_gabor()
tools.graphs.kNNPyGSPGraph
tools.graphs.kNNPyGSPGraph
106
106
gft_windowed_gabor() (graph-
gft_windowed_gabor() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
tools.graphs.MNNLandmarkPyGSPGraph
method), }2
method), }2
gft_windowed_gabor() (graph-
gft_windowed_gabor() (graph-
tools.graphs.MNNPyGSPGraph method),
tools.graphs.MNNPyGSPGraph method),
38
38
gft_windowed_gabor() (graph-
gft_windowed_gabor() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.TraditionalLandmarkPyGSPGraph
method),59
method),59
gft_windowed_gabor() (graph-
gft_windowed_gabor() (graph-
tools.graphs.TraditionalPyGSPGraph method),
tools.graphs.TraditionalPyGSPGraph method),
72
72
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.base.PyGSPGraph method), }12
tools.base.PyGSPGraph method), }12
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
tools.graphs.kNNLandmarkPyGSPGraph
method), }9
method), }9
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.graphs.kNNPyGSPGraph method),
tools.graphs.kNNPyGSPGraph method),
106
106
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
tools.graphs.MNNLandmarkPyGSPGraph
method),26
method),26
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.graphs.MNNPyGSPGraph method),
tools.graphs.MNNPyGSPGraph method),
39
39
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.TraditionalLandmarkPyGSPGraph
method),60
method),60
gft_windowed_normalized() (graph-
gft_windowed_normalized() (graph-
tools.graphs.TraditionalPyGSPGraph method),
tools.graphs.TraditionalPyGSPGraph method),
72
72
grad()(graphtools.base.PyGSPGraph method), 125
grad()(graphtools.base.PyGSPGraph method), 125
grad()(graphtools.graphs.kNNLandmarkPyGSPGraph
grad()(graphtools.graphs.kNNLandmarkPyGSPGraph
method),93
method),93
grad() (graphtools.graphs.kNNPyGSPGraph method),
grad() (graphtools.graphs.kNNPyGSPGraph method),
106
106
grad()(graphtools.graphs.MNNLandmarkPyGSPGraph
grad()(graphtools.graphs.MNNLandmarkPyGSPGraph
method),26
method),26
grad() (graphtools.graphs.MNNPyGSPGraph
grad() (graphtools.graphs.MNNPyGSPGraph
method), 39
method), 39
grad() (graphtools.graphs.TraditionalLandmarkPyGSPGraph
grad() (graphtools.graphs.TraditionalLandmarkPyGSPGraph
method),60
method),60
grad() (graphtools.graphs.TraditionalPyGSPGraph
grad() (graphtools.graphs.TraditionalPyGSPGraph
method),72
method),72
Graph()(in module graphtools.api), }
Graph()(in module graphtools.api), }
graphtools.api (module), 5
graphtools.api (module), 5
graphtools.base (module), 112
graphtools.base (module), 112
graphtools.graphs (module), }
graphtools.graphs (module), }
graphtools.utils(module), 129

```
```

graphtools.utils(module), 129

```
```

    method), 93
    ```
|
if_sparse() (in module graphtools.utils), 130
igft()(graphtools.base.PyGSPGraph method),126
igft() (graphtools.graphs.kNNLandmarkPyGSPGraph
 method),94
igft()(graphtools.graphs.kNNPyGSPGraph method),
 107
igft()(graphtools.graphs.MNNLandmarkPyGSPGraph
 method), 27
igft() (graphtools.graphs.MNNPyGSPGraph
 method), }3
igft()(graphtools.graphs.TraditionalLandmarkPyGSPG\dot{r}}|>\mp@code{#
 method), }6
igft() (graphtools.graphs.TraditionalPyGSPGraph
 method), }7
interpolate()
 method),117
interpolate() (graphtools.graphs.kNNGraph
 method), }8
interpolate() (graph-
 tools.graphs.kNNLandmarkGraph method),
 84
interpolate() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 method),94
interpolate()
 tools.graphs.kNNPyGSPGraph method),
 107
interpolate() (graphtools.graphs.LandmarkGraph
 method), }
interpolate() (graphtools.graphs.MNNGraph
 method),13
interpolate() (graph-
 tools.graphs.MNNLandmarkGraph method),
 17
interpolate()
 (graph-
 tools.graphs.MNNLandmarkPyGSPGraph
 method),27
interpolate()
 tools.graphs.MNNPyGSPGraph
 4 0
interpolate()
 tools.graphs.TraditionalGraph
 4 6
interpolate()
 tools.graphs.TraditionalLandmarkGraph
 method),50
interpolate()
 (graph-
 tools.graphs.TraditionalLandmarkPyGSPGraph
 method),61
interpolate() (graph-
 tools.graphs.TraditionalPyGSPGraph method),
 7 3
inverse_transform() (graphtools.base.Data
```

if_sparse() (in module graphtools.utils), 130
igft() (graphtools.base.PyGSPGraph method), 126
igft() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 94
igft() (graphtools.graphs.kNNPyGSPGraph method), 107
igft() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 27
igft() (graphtools.graphs.MNNPyGSPGraph method), 39
igft () (graphtools.graphs.TraditionalLandmarkPyGSPGridpherse_transform () 107
inverse_transform() (graphtools.graphs.LandmarkGraph method), 10
inverse_transform() (graphtools.graphs.MNNGraph method), 14
inverse_transform() (graphtools.graphs.MNNLandmarkGraph method), 17
inverse_transform() (graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 28
inverse_transform() (graph-
tools.graphs.MNNPyGSPGraph method), 40
inverse_transform() (graph-
tools.graphs.TraditionalGraph method), 47
inverse_transform() (graphtools.graphs.TraditionalLandmarkGraph method), 50
inverse_transform() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph method), 61
inverse_transform() (graphtools.graphs.TraditionalPyGSPGraph method), 74
is_Anndata () (in module graphtools.utils), 130
is_connected() (graphtools.base.PyGSPGraph
method), 126
is_connected() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 95
is_connected() (graph-
tools.graphs.kNNPyGSPGraph method),
108
is_connected()
(graph-
tools.graphs.MNNLandmarkPyGSPGraph
method), 28
is_connected()
(graph-
tools.graphs.MNNPyGSPGraph method),
40

```
is_connected()
 tools.graphs.TraditionalLandmarkPyGSPGraph
 method), }6
is_connected()
 tools.graphs.TraditionalPyGSPGraph method),
 74
is_DataFrame() (in module graphtools.utils), 130
is_directed() (graphtools.base.PyGSPGraph
 method),127
is_directed() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 method), }9
is_directed()
 tools.graphs.kNNPyGSPGraph
 (graph-
 method),
 (graph-
 tools.graphs.MNNLandmarkPyGSPGraph
 method), }2
is_directed()
 tools.graphs.MNNPyGSPGraph
 4 1
is_directed() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
 method), }6
is_directed() (graph-
 tools.graphs.TraditionalPyGSPGraph method),
 74
is_SparseDataFrame() (in module graph-
 tools.utils), }13
(graphmethod),
(graph-
```


## K

```
K (graphtools.base.BaseGraph attribute), 112
K (graphtools.base.DataGraph attribute), 116
K (graphtools.base.PyGSPGraph attribute), 120
K (graphtools.graphs.kNNGraph attribute), 78
K (graphtools.graphs.kNNLandmarkGraph attribute), 82
K (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 86
K (graphtools.graphs.kNNPyGSPGraph attribute), 99
K (graphtools.graphs.LandmarkGraph attribute), 8
K (graphtools.graphs.MNNGraph attribute), 12
K (graphtools.graphs.MNNLandmarkGraph attribute), 15
K (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 20
K (graphtools.graphs.MNNPyGSPGraph attribute), 32
K (graphtools.graphs.TraditionalGraph attribute), 45
K (graphtools.graphs.TraditionalLandmarkGraph attribute), 49
K (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 53
K (graphtools.graphs.TraditionalPyGSPGraph attribute), 66
kernel (graphtools.base.BaseGraph attribute), 112, 113
```

kernel (graphtools.base.DataGraph attribute), 118
kernel (graphtools.graphs.kNNGraph attribute), 80
kernel (graphtools.graphs.kNNLandmarkGraph attribute), 84
kernel (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 96
kernel (graphtools.graphs.kNNPyGSPGraph attribute), 109
kernel (graphtools.graphs.LandmarkGraph attribute), 10
kernel (graphtools.graphs.MNNGraph attribute), 14
kernel (graphtools.graphs.MNNLandmarkGraph attribute), 18
kernel (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 29
kernel (graphtools.graphs.MNNPyGSPGraph attribute), 41
kernel (graphtools.graphs.TraditionalGraph attribute), 47
kernel (graphtools.graphs.TraditionalLandmarkGraph attribute), 51
kernel (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62
kernel (graphtools.graphs.TraditionalPyGSPGraph attribute), 75
kernel_degree (graphtools.base.BaseGraph attribute), 113
kernel_degree (graphtools.base.DataGraph attribute), 118
kernel_degree (graphtools.graphs.kNNGraph attribute), 80
kernel_degree (graphtools.graphs.kNNLandmarkGraph attribute), 84
kernel_degree (graph-
tools.graphs.kNNLandmarkPyGSPGraph attribute), 96
kernel_degree (graphtools.graphs.kNNPyGSPGraph attribute), 109
kernel_degree (graphtools.graphs.LandmarkGraph attribute), 10
kernel_degree (graphtools.graphs.MNNGraph attribute), 14
kernel_degree (graphtools.graphs.MNNLandmarkGraph attribute), 18
kernel_degree (graph-
tools.graphs.MNNLandmarkPyGSPGraph attribute), 29
kernel_degree (graphtools.graphs.MNNPyGSPGraph attribute), 41
kernel_degree (graph-
tools.graphs.TraditionalGraph 47
kernel_degree tools.graphs.TraditionalLandmarkGraph attribute), 51
kernel_degree
(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62
kernel_degree (graphtools.graphs.TraditionalPyGSPGraph tribute), 75
knn_tree (graphtools.graphs.kNNGraph attribute), 78, 80
knn_tree (graphtools.graphs.kNNLandmarkGraph attribute), 84
knn_tree (graphtools.graphs.kNNLandmarkPyGSPGrap attribute), 96
knn_tree (graphtools.graphs.kNNPyGSPGraph attribute), 109
kNNGraph (class in graphtools.graphs), 78
kNNLandmarkGraph (class in graphtools.graphs), 82
kNNLandmarkPyGSPGraph (class in graphtools.graphs), 86
kNNPyGSPGraph (class in graphtools.graphs), 99
L
landmark_op tools.graphs.kNNLandmarkGraph attribute), 85
landmark_op (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 96
landmark_op (graphtools.graphs.LandmarkGraph attribute), 7, 10
landmark_op tools.gra 18
landmark_op
(graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 29
landmark_op (graphtools.graphs.TraditionalLandmarkGraph attribute), 51
landmark_op
(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62
LandmarkGraph (class in graphtools.graphs), 7
lmax (graphtools.base.PyGSPGraph attribute), 127
lmax (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 96
lmax (graphtools.graphs.kNNPyGSPGraph attribute), 109
lmax (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 29
attribute), lmax (graphtools.graphs.MNNPyGSPGraph attribute), 41
lmax (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 62
Imax (graphtools.graphs.TraditionalPyGSPGraph attribute), 75
M
matrix_is_equivalent() (in module graphtools.utils), 130
MNNGraph (class in graphtools.graphs), 12
MNNLandmarkGraph (class in graphtools.graphs), 15
MNNLandmarkPyGSPGraph (class in graphtools.graphs), 19
MNNPyGSPGraph (class in graphtools.graphs), 32
nodulate () (graphtools.base.PyGSPGraph method), 127
modulate() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 96
modulate() (graphtools.graphs.kNNPyGSPGraph method), 109
modulate () (graphtools.graphs.MNNLandmarkPyGSPGraph method), 29
modulate() (graphtools.graphs.MNNPyGSPGraph method), 41
modulate() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 63
modulate() (graphtools.graphs.TraditionalPyGSPGraph method), 75
mu (graphtools.base.PyGSPGraph attribute), 128
mu (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 97
mu (graphtools.graphs.kNNPyGSPGraph attribute), 109
mu (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 29
mu (graphtools.graphs.MNNPyGSPGraph attribute), 42
mu (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 63
mu (graphtools.graphs.TraditionalPyGSPGraph attribute), 75

## N

n_pca (graphtools.base.Data attribute), 115
nonzero_discrete() (in module graphtools.utils), 130

## P

P (graphtools.base.BaseGraph attribute), 112
P (graphtools.base.DataGraph attribute), 116
P (graphtools.graphs.kNNGraph attribute), 78
P (graphtools.graphs.kNNLandmarkGraph attribute), 82
P (graphtools.graphs.kNNLandmarkPyGSPGraph attribute), 86
P (graphtools.graphs.kNNPyGSPGraph attribute), 99

```
P (graphtools.graphs.LandmarkGraph attribute), }
P (graphtools.graphs.MNNGraph attribute), 12
P (graphtools.graphs.MNNLandmarkGraph attribute),16
P (graphtools.graphs.MNNLandmarkPyGSPGraph at-
P (graphtools.graphs.MNNPyGSPGraph attribute), 32
P (graphtools.graphs.TraditionalGraph attribute), 45
P (graphtools.graphs.TraditionalLandmarkGraph at-
P (graphtools.graphs.TraditionalLandmarkPyGSPGraph
 attribute), 53
P (graphtools.graphs.TraditionalPyGSPGraph attribute),
plot()(graphtools.base.PyGSPGraph method),128
plot()(graphtools.graphs.kNNLandmarkPyGSPGraph
 method), }9
plot()(graphtools.graphs.kNNPyGSPGraph method),
 109
plot()(graphtools.graphs.MNNLandmarkPyGSPGraph
 method),29
plot() (graphtools.graphs.MNNPyGSPGraph
 method),42
plot()(graphtools.graphs.TraditionalLandmarkPyGSPGraph
 method),63
plot() (graphtools.graphs.TraditionalPyGSPGraph
 method),75
plot_signal() (graphtools.base.PyGSPGraph
 method),128
plot_signal()
 tools.graphs.kNNLandmarkPyGSPGraph
 method),97
plot_signal()
 tools.graphs.kNNPyGSPGraph
 109
plot_signal() (graph-
 tools.graphs.MNNLandmarkPyGSPGraph
 method), 30
plot_signal() (graph-
 tools.graphs.MNNPyGSPGraph method),
 4 2
plot_signal()
plot_signal()
plot_spectrogram() (graph-
 tools.base.PyGSPGraph method),128
plot_spectrogram() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 method),97
plot_spectrogram()
 tools.graphs.kNNPyGSPGraph
 1 0 9
```

tribute), 20 tribute), 49 66
(graphtools.graphs.TraditionalLandmarkPyGSPGraph tools.graphs
method), 63
(graphtools.graphs.TraditionalPyGSPGraph method), 75
P (graphtools.graphs.LandmarkGraph attribute), 8
P (graphtools.graphs.MNNGraph attribute), 12

P (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 53
P (graphtools.graphs.TraditionalPyGSPGraph attribute),
plot () (graphtools.base.PyGSPGraph method), 128
plot() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97
plot() (graphtools.graphs.kNNPyGSPGraph method), 109
plot() (graphtools.graphs.MNNLandmarkPyGSPGraph method), 29
plot() (graphtools.graphs.MNNPyGSPGraph method), 42
plot () (graphtools.graphs.TraditionalLandmarkPyGSPG method), 63
plot() (graphtools.graphs.TraditionalPyGSPGraph method), 75
plot_signal() (graphtools.base.PyGSPGraph
plot_signal()
(graphtools.graphs.kNNLandmarkPyGSPGraph method), 97
plot_signal() 109
plot_signal()
(graphtools.graphs.MNNLandmarkPyGSPGraph method), 30
plot_signal() (graphtools.graphs.MNNPyGSPGraph method), 42
plot_signal()
plot_signal()
(graph-
(graph-
(graphmethod),

```
```

plot_spectrogram()

```
```

plot_spectrogram()
(graph-
(graph-
tools.graphs.MNNLandmarkPyGSPGraph
tools.graphs.MNNLandmarkPyGSPGraph
method), 30
method), 30
plot_spectrogram() (graph-
plot_spectrogram() (graph-
tools.graphs.MNNPyGSPGraph method),
tools.graphs.MNNPyGSPGraph method),
42
42
plot_spectrogram()
plot_spectrogram()
(graph-
(graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 63
method), 63
plot_spectrogram() (graph-
plot_spectrogram() (graph-
tools.graphs.TraditionalPyGSPGraph method),
tools.graphs.TraditionalPyGSPGraph method),
76
76
PyGSPGraph (class in graphtools.base), 120
PyGSPGraph (class in graphtools.base), 120
R
R
read_pickle() (in module graphtools.api), 7
read_pickle() (in module graphtools.api), 7
S
S
set_coordinates() (graphtools.base.PyGSPGraph
set_coordinates() (graphtools.base.PyGSPGraph
method), 128
method), 128
set_coordinates() (graph-
set_coordinates() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
tools.graphs.kNNLandmarkPyGSPGraph
method), 97
method), 97
set_coordinates() (graph-
set_coordinates() (graph-
tools.graphs.kNNPyGSPGraph method),
tools.graphs.kNNPyGSPGraph method),
110
110
set_coordinates()
set_coordinates()
(graph-
(graph-
tools.graphs.MNNLandmarkPyGSPGraph
tools.graphs.MNNLandmarkPyGSPGraph
method), 30
method), 30
set_coordinates() (graph-
set_coordinates() (graph-
tools.graphs.MNNPyGSPGraph method),
tools.graphs.MNNPyGSPGraph method),
42
42
set_coordinates() (graph-
set_coordinates() (graph-
tools.graphs.TraditionalLandmarkPyGSPGraph
tools.graphs.TraditionalLandmarkPyGSPGraph
method), 63
method), 63
set_coordinates() (graph-
set_coordinates() (graph-
tools.graphs.TraditionalPyGSPGraph method),
tools.graphs.TraditionalPyGSPGraph method),
76
76
set_diagonal() (in module graphtools.utils), 130
set_diagonal() (in module graphtools.utils), 130
set_params() (graphtools.base.Base method), 112
set_params() (graphtools.base.Base method), 112
set_params() (graphtools.base.BaseGraph method),
set_params() (graphtools.base.BaseGraph method),
113
113
set_params() (graphtools.base.Data method), 115
set_params() (graphtools.base.Data method), 115
set_params() (graphtools.base.DataGraph method),
set_params() (graphtools.base.DataGraph method),
118
118
set_params() (graphtools.base.PyGSPGraph
set_params() (graphtools.base.PyGSPGraph
method), 128
method), 128
set_params() (graphtools.graphs.kNNGraph
set_params() (graphtools.graphs.kNNGraph
method), 81
method), 81
set_params() (graph-
set_params() (graph-
tools.graphs.kNNLandmarkGraph method),
tools.graphs.kNNLandmarkGraph method),
85
85
set_params() (graph-
set_params() (graph-
tools.graphs.kNNLandmarkPyGSPGraph

```
```

    tools.graphs.kNNLandmarkPyGSPGraph
    ```
```

method), 97
set_params() (graphtools.graphs.kNNPyGSPGraph method), 110
set_params() (graphtools.graphs.LandmarkGraph method), 10
set_params() (graphtools.graphs.MNNGraph method), 14
set_params() (graphtools.graphs.MNNLandmarkGraph 18
set_params() (graph-
tools.graphs.MNNLandmarkPyGSPGraph method), 30
set_params() (graphtools.graphs.MNNPyGSPGraph method), 42
set_params() (graphtools.graphs.TraditionalGraph method), 47
set_params() (graph-
tools.graphs.TraditionalLandmarkGraph method), 51
set_params()
(graph-
tools.graphs.TraditionalLandmarkPyGSPGraph method), 63
set_params() (graphtools.graphs.TraditionalPyGSPGraph method), 76
set_submatrix() (in module graphtools.utils), 130
shortest_path() (graphtools.base.BaseGraph method), 113
shortest_path() (graphtools.base.DataGraph method), 119
shortest_path() (graphtools.graphs.kNNGraph method), 81
shortest_path() (graphtools.graphs.kNNLandmarkGraph method), 85
shortest_path() (graphtools.graphs.kNNLandmarkPyGSPGraph method), 97
shortest_path()
tools.graphs.kNNPyGSPGraph 110
shortest_path()
tools.graphs.LandmarkGraph method), 10
shortest_path() (graphtools.graphs.MNNGraph method), 14
shortest_path() (graphtools.graphs.MNNLandmarkGraph method), 18
shortest_path() (graph-
tools.graphs.MNNLandmarkPyGSPGraph method), 30
shortest_path() tools.graphs.MNNPyGSPGraph
(graphmethod),

43
shortest_path() (graphtools.graphs.TraditionalGraph method), 47
shortest_path() (graphtools.graphs.TraditionalLandmarkGraph method), 51
shortest_path() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 64
shortest_path() (graphtools.graphs.TraditionalPyGSPGraph method), 76
sparse_maximum () (in module graphtools.utils), 130
sparse_minimum () (in module graphtools.utils), 130
sparse_nonzero_discrete() (in module graphtools.utils), 130
sparse_set_diagonal() (in module graphtools.utils), 130
subgraph() (graphtools.base.PyGSPGraph method), 128
subgraph () (graphtools.graphs.kNNLandmarkPyGSPGraph method), 98
subgraph() (graphtools.graphs.kNNPyGSPGraph method), 110
subgraph () (graphtools.graphs.MNNLandmarkPyGSPGraph method), 31
subgraph () (graphtools.graphs.MNNPyGSPGraph method), 43
subgraph () (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 64
subgraph () (graphtools.graphs.TraditionalPyGSPGraph method), 77
subgraphs (graphtools.graphs.MNNGraph attribute), 12
symmetrize_kernel() (graph-
tools.base.BaseGraph method), 114
symmetrize_kernel()
tools.base.DataGraph method), 119
symmetrize_kernel() (graphtools.graphs.kNNGraph method), 81
symmetrize_kernel()
(graphtools.graphs.kNNLandmarkGraph method), 85
symmetrize_kernel() (graph-
tools.graphs.kNNLandmarkPyGSPGraph
method), 98
symmetrize_kernel() (graphtools.graphs.kNNPyGSPGraph method), 111
symmetrize_kernel() (graphtools.graphs.LandmarkGraph method), 11
symmetrize_kernel() (graphtools.graphs.MNNGraph method), 15

```
symmetrize_kernel() (graph-
 tools.graphs.MNNLandmarkGraph method),
 18
symmetrize_kernel() (graph-
 tools.graphs.MNNLandmarkPyGSPGraph
 method), 31
symmetrize_kernel()
 tools.graphs.MNNPyGSPGraph
 43
symmetrize_kernel()
 tools.graphs.TraditionalGraph
 48
symmetrize_kernel() (graph-
 tools.graphs.TraditionalLandmarkGraph
 method), }5
symmetrize_kernel()
 (graph-
 tools.graphs.TraditionalLandmarkPyGSPGraph
 method),64
symmetrize_kernel()
 (graph-
 tools.graphs.TraditionalPyGSPGraph method),
 77
T
to_array() (in module graphtools.utils), 130
to_igraph() (graphtools.base.BaseGraph method),
 114
to_igraph() (graphtools.base.DataGraph method),
 119
to_igraph()(graphtools.graphs.kNNGraph method),
 81
to_igraph() (graph-
 tools.graphs.kNNLandmarkGraph method),
 85
to_igraph() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 method), }9
to_igraph() (graphtools.graphs.kNNPyGSPGraph
 method),111
to_igraph() (graphtools.graphs.LandmarkGraph
 method), 11
to_igraph() (graphtools.graphs.MNNGraph
 method), }1
to_igraph()
 tools.graphs.MNNLandmarkGraph
 18
to_igraph()
 tools.graphs.MNNLandmarkPyGSPGraph
 method), 31
to_igraph() (graphtools.graphs.MNNPyGSPGraph
 method),43
to_igraph() (graphtools.graphs.TraditionalGraph
 method), 48
to_igraph() (graph-
 tools.graphs.TraditionalLandmarkGraph
```

method), 52
to_igraph()
(graphtools.graphs.TraditionalLandmarkPyGSPGraph
(graph-
method),
(graph-
method),
symmetrize_kernel() (graph-
tools.graphs.TraditionalLandmarkGraph method), 52
(graph-
tools.graphs.TraditionalLandmarkPyGSPGraph method), 64
symmetrize_kernel()
(graph77

## T

to_array() (in module graphtools.utils), 130
to_igraph() (graphtools.base.BaseGraph method), 114
to_igraph() (graphtools.base.DataGraph method), 119
to_igraph() (graphtools.graphs.kNNGraph method), 81
to_igraph()
(graph-
method),
(graph-
 method), 98
to_igraph() (graphtools.graphs.kNNPyGSPGraph method), 111
to_igraph() (graphtools.graphs.LandmarkGraph method), 11
to_igraph() (graphtools.graphs.MNNGraph method), 15
to_igraph() tools.graphs.MNNLandmarkGraph 18
(graph-
method),
(graph-
to_igraph()
tools.graphs.MNNLandmarkPyGSPGraph method), 31
to_igraph() (graphtools.graphs.MNNPyGSPGraph method), 43
to_igraph() (graphtools.graphs.TraditionalGraph method), 48
to_igraph() (graphtools.graphs.TraditionalLandmarkGraph
method), 64
to_igraph()
(graphtools.graphs.TraditionalPyGSPGraph method), 77
to_pickle() (graphtools.base.BaseGraph method), 114
to_pickle() (graphtools.base.DataGraph method), 119
to_pickle() (graphtools.graphs.kNNGraph method), 81
to_pickle() (graphtools.graphs.kNNLandmarkGraph method), 85
to_pickle()
(graphtools.graphs.kNNLandmarkPyGSPGraph method), 98
to_pickle() (graphtools.graphs.kNNPyGSPGraph method), 111
to_pickle() (graphtools.graphs.LandmarkGraph method), 11
to_pickle() (graphtools.graphs.MNNGraph method), 15
to_pickle() (graphtools.graphs.MNNLandmarkGraph method), 19
to_pickle()
(graphtools.graphs.MNNLandmarkPyGSPGraph method), 31
to_pickle() (graphtools.graphs.MNNPyGSPGraph method), 43
to_pickle() (graphtools.graphs.TraditionalGraph method), 48
to_pickle() (graphtools.graphs.TraditionalLandmarkGraph method), 52
to_pickle() (graphtools.graphs.TraditionalLandmarkPyGSPGraph method), 65
to_pickle() (graphtools.graphs.TraditionalPyGSPGraph method), 77
to_pygsp() (graphtools.base.BaseGraph method),
114
to_pygsp() (graphtools.base.DataGraph method), 119
to_pygsp() (graphtools.graphs.kNNGraph method), 81
to_pygsp() (graphtools.graphs.kNNLandmarkGraph method), 86
to_pygsp () (graphtools.graphs.kNNLandmarkPyGSPGraph method), 98

```
to_pygsp() (graphtools.graphs.kNNPyGSPGraph transform() (graph-
 method),111 tools.graphs.TraditionalLandmarkGraph
to_pygsp() (graphtools.graphs.LandmarkGraph method),52
 method),11 transform()
 (graph-
to_pygsp() (graphtools.graphs.MNNGraph method),
 15
to_pygsp() (graphtools.graphs.MNNLandmarkGraph
 method),19
to_pygsp()(graphtools.graphs.MNNLandmarkPyGSPGraph
 method), 31
to_pygsp() (graphtools.graphs.MNNPyGSPGraph
 method),43
to_pygsp() (graphtools.graphs.TraditionalGraph
 method),48 tools.graphs.kNNLandmarkPyGSPGraph
to_pygsp() (graphtools.graphs.TraditionalLandmarkGraph attribute),99
 method), 52 transitions (graphtools.graphs.LandmarkGraph at-
to_pygsp() (graphtools.graphs.TraditionalLandmarkPyGSPGraphtribute), 7, 11
 method),65 transitions (graph-
to_pygsp()(graphtools.graphs.TraditionalPyGSPGraph tools.graphs.MNNLandmarkGraph attribute),
 method),77
TraditionalGraph (class in graphtools.graphs), 44
TraditionalLandmarkGraph (class in graph-
 tools.graphs),48
TraditionalLandmarkPyGSPGraph (class in
 graphtools.graphs),53
TraditionalPyGSPGraph (class in graph-
 tools.graphs),65
transform() (graphtools.base.Data method), 116
transform() (graphtools.base.DataGraph method),
 119
transform()(graphtools.graphs.kNNGraph method),
 82
transform() (graph-
 tools.graphs.kNNLandmarkGraph method),
 86
transform() (graph-
 tools.graphs.kNNLandmarkPyGSPGraph
 method),99
transform() (graphtools.graphs.kNNPyGSPGraph
 method),111
transform() (graphtools.graphs.LandmarkGraph
 method),11
transform() (graphtools.graphs.MNNGraph
 method),15
transform() (graph-
 tools.graphs.MNNLandmarkGraph method),
 19
transform() (graph-
 tools.graphs.MNNLandmarkPyGSPGraph
 method), }3
 orm() (graphtools.graphs.MNNPyGSPGraph
 method),44
transform() (graphtools.graphs.TraditionalGraph
 method),48
```

U (graphtools.graphs.MNNLandmarkPyGSPGraph attribute), 20
U (graphtools.graphs.MNNPyGSPGraph attribute), 32
U (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute), 53
U (graphtools.graphs.TraditionalPyGSPGraph attribute), 66

## W

```
weighted (graphtools.base.BaseGraph attribute), 114
weighted (graphtools.base.DataGraph attribute),120
weighted (graphtools.graphs.kNNGraph attribute), 82
weighted (graphtools.graphs.kNNLandmarkGraph at-
 tribute), 86
weighted (graphtools.graphs.kNNLandmarkPyGSPGraph
 attribute), }9
weighted (graphtools.graphs.kNNPyGSPGraph
 attribute), 112
weighted (graphtools.graphs.LandmarkGraph at-
 tribute),12
weighted (graphtools.graphs.MNNGraph attribute),
 15
weighted (graphtools.graphs.MNNLandmarkGraph
 attribute), 19
weighted (graphtools.graphs.MNNLandmarkPyGSPGraph
 attribute), 32
weighted (graphtools.graphs.MNNPyGSPGraph at-
 tribute),44
weighted (graphtools.graphs.TraditionalGraph at-
 tribute),48
weighted (graphtools.graphs.TraditionalLandmarkGraph
 attribute), }5
weighted (graphtools.graphs.TraditionalLandmarkPyGSPGraph
 attribute), }6
weighted (graphtools.graphs.TraditionalPyGSPGraph
 attribute), 78
```

