

graphtools

[image: Latest PyPi version]

 Installation

Installation

Installation with pip

Install graphtools using:

pip install --user graphtools

Installation from source

Install from source using:

git clone git://github.com/KrishnaswamyLab/graphtools.git
cd graphtools
python setup.py install --user

 Reference

Reference

API

	
graphtools.api.Graph(data, n_pca=None, rank_threshold=None, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, knn_max=None, anisotropy=0, distance='euclidean', thresh=0.0001, kernel_symm='+', theta=None, precomputed=None, beta=1, sample_idx=None, adaptive_k=None, n_landmark=None, n_svd=100, n_jobs=-1, verbose=False, random_state=None, graphtype='auto', use_pygsp=False, initialize=True, **kwargs)

	Create a graph built on data.

Automatically selects the appropriate DataGraph subclass based on
chosen parameters.
Selection criteria:
- if graphtype is given, this will be respected
- otherwise:
– if sample_idx is given, an MNNGraph will be created
– if precomputed is not given, and either decay is None or thresh
is given, a kNNGraph will be created
- otherwise, a TraditionalGraph will be created.

Incompatibilities:
- MNNGraph and kNNGraph cannot be precomputed
- kNNGraph and TraditionalGraph do not accept sample indices

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray, scipy.sparse.spmatrix.
TODO: accept pandas dataframes’

	n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to retain for graph building.
If n_pca in [None, False, 0], uses the original data.
If ‘auto’ or True then estimate using a singular value threshold
Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

	rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when estimating rank for
n_pca in [True, ‘auto’].
If ‘auto’, this threshold is
s_max * eps * max(n_samples, n_features)
where s_max is the maximum singular value of the data matrix
and eps is numerical precision. [press2007].

	knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to build the graph

	decay (int or None, optional (default: 40)) – Rate of alpha decay to use. If None, alpha decay is not used and a vanilla
k-Nearest Neighbors graph is returned.

	bandwidth (float, list-like,`callable`, or None, optional (default: None)) – Fixed bandwidth to use. If given, overrides knn. Can be a single
bandwidth, list-like (shape=[n_samples]) of bandwidths for each
sample, or a callable that takes in an n x n distance matrix and returns a
a single value or list-like of length n (shape=[n_samples])

	bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

	knn_max (int or None, optional (default : None)) – Maximum number of neighbors with nonzero affinity

	anisotropy (float, optional (default: 0)) – Level of anisotropy between 0 and 1
(alpha in Coifman & Lafon, 2006)

	distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance can be used
distance metric for building kNN graph.
TODO: actually sklearn.neighbors has even more choices

	thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay kernel.
All affinities below thresh will be set to zero in order to save
on time and memory constraints.

	kernel_symm (string, optional (default: '+')) – Defines method of kernel symmetrization.
‘+’ : additive
‘*’ : multiplicative
‘mnn’ : min-max MNN symmetrization
‘none’ : no symmetrization

	theta (float (default: None)) – Min-max symmetrization constant or matrix. Only used if kernel_symm=’mnn’.
K = theta * min(K, K.T) + (1 - theta) * max(K, K.T)

	precomputed ({‘distance’, ‘affinity’, ‘adjacency’, None}, optional (default: None)) – If the graph is precomputed, this variable denotes which graph
matrix is provided as data.
Only one of precomputed and n_pca can be set.

	beta (float, optional(default: 1)) – Multiply between - batch connections by beta

	sample_idx (array-like) – Batch index for MNN kernel

	adaptive_k ({‘min’, ‘mean’, ‘sqrt’, ‘none’} (default: None)) – Weights MNN kernel adaptively using the number of cells in
each sample according to the selected method.

	n_landmark (int, optional (default: 2000)) – number of landmarks to use

	n_svd (int, optional (default: 100)) – number of SVD components to use for spectral clustering

	random_state (int or None, optional (default: None)) – Random state for random PCA

	verbose (bool, optional (default: True)) – Verbosity.
TODO: should this be an integer instead to allow multiple
levels of verbosity?

	n_jobs (int, optional (default : 1)) – The number of jobs to use for the computation.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging.
For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used

	graphtype ({'exact', 'knn', 'mnn', 'auto'} (Default: 'auto')) – Manually selects graph type. Only recommended for expert users

	use_pygsp (bool (Default: False)) – If true, inherits from pygsp.graphs.Graph.

	initialize (bool (Default: True)) – If True, initialize the kernel matrix on instantiation

	**kwargs (extra arguments for pygsp.graphs.Graph) –

	Returns

	G

	Return type

	DataGraph

	Raises

	ValueError : if selected parameters are incompatible.

References

	press2007(1,2)

	W. Press, S. Teukolsky, W. Vetterling and B. Flannery,
“Numerical Recipes (3rd edition)”,
Cambridge University Press, 2007, page 795.

	
graphtools.api.from_igraph(G, attribute='weight', **kwargs)

	Convert an igraph.Graph to a graphtools.Graph

Creates a graphtools.graphs.TraditionalGraph with a
precomputed adjacency matrix

	Parameters

	
	G (igraph.Graph) – Graph to be converted

	attribute (str, optional (default: "weight")) – attribute containing edge weights, if any.
If None, unweighted graph is built

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.graphs.TraditionalGraph

	
graphtools.api.read_pickle(path)

	Load pickled Graphtools object (or any object) from file.

	Parameters

	path (str) – File path where the pickled object will be loaded.

Graph Classes

	
class graphtools.graphs.LandmarkGraph(data, n_landmark=2000, n_svd=100, **kwargs)

	Bases: graphtools.base.DataGraph

Landmark graph

Adds landmarking feature to any data graph by taking spectral clusters
and building a ‘landmark operator’ from clusters to samples and back to
clusters.
Any transformation on the landmark kernel is trivially extended to the
data space by multiplying by the transition matrix.

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray, scipy.sparse.spmatrix.,
pandas.DataFrame, pandas.SparseDataFrame.

	n_landmark (int, optional (default: 2000)) – number of landmarks to use

	n_svd (int, optional (default: 100)) – number of SVD components to use for spectral clustering

	
landmark_op

	Landmark operator.
Can be treated as a diffusion operator between landmarks.

	Type

	array-like, shape=[n_landmark, n_landmark]

	
transitions

	Transition probabilities between samples and landmarks.

	Type

	array-like, shape=[n_samples, n_landmark]

	
clusters

	Private attribute. Cluster assignments for each sample.

	Type

	array-like, shape=[n_samples]

Examples

>>> G = graphtools.Graph(data, n_landmark=1000)
>>> X_landmark = transform(G.landmark_op)
>>> X_full = G.interpolate(X_landmark)

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the kernel matrix

Abstract method that all child classes must implement.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y)

	Build a kernel from new input data Y to the self.data

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	K_yx – kernel matrix where each row represents affinities of a single
sample in Y to all samples in self.data.

	Return type

	array-like, [n_samples_y, n_samples]

	Raises

	
	ValueError: if this Graph is not capable of extension or

	if the supplied data is the wrong shape

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_landmark
- n_svd

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
weighted

	

	
class graphtools.graphs.MNNGraph(data, sample_idx, knn=5, beta=1, n_pca=None, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh=0.0001, n_jobs=1, **kwargs)

	Bases: graphtools.base.DataGraph

Mutual nearest neighbors graph

Performs batch correction by forcing connections between batches, but
only when the connection is mutual (i.e. x is a neighbor of y _and_
y is a neighbor of x).

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray,
scipy.sparse.spmatrix,
pandas.DataFrame, pandas.SparseDataFrame.

	sample_idx (array-like, shape=[n_samples]) – Batch index

	beta (float, optional (default: 1)) – Downweight between-batch affinities by beta

	adaptive_k ({‘min’, ‘mean’, ‘sqrt’, None} (default: None)) – Weights MNN kernel adaptively using the number of cells in
each sample according to the selected method.

	
subgraphs

	Graphs representing each batch separately

	Type

	list of graphtools.graphs.kNNGraph

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the MNN kernel.

Build a mutual nearest neighbors kernel.

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, theta=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta values must be explicitly
specified between Y and each sample in self.data

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- adaptive_k
- decay
- distance
- thresh
- beta

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
weighted

	

	
class graphtools.graphs.MNNLandmarkGraph(data, sample_idx, knn=5, beta=1, n_pca=None, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh=0.0001, n_jobs=1, **kwargs)

	Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the MNN kernel.

Build a mutual nearest neighbors kernel.

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, theta=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta values must be explicitly
specified between Y and each sample in self.data

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- adaptive_k
- decay
- distance
- thresh
- beta

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
weighted

	

	
class graphtools.graphs.MNNLandmarkPyGSPGraph(data, sample_idx, knn=5, beta=1, n_pca=None, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh=0.0001, n_jobs=1, **kwargs)

	Bases: graphtools.graphs.MNNGraph, graphtools.graphs.LandmarkGraph, graphtools.base.PyGSPGraph

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the MNN kernel.

Build a mutual nearest neighbors kernel.

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, theta=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta values must be explicitly
specified between Y and each sample in self.data

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
get_params()

	Get parameters from this object

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- adaptive_k
- decay
- distance
- thresh
- beta

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

	
weighted

	

	
class graphtools.graphs.MNNPyGSPGraph(data, sample_idx, knn=5, beta=1, n_pca=None, decay=None, adaptive_k=None, bandwidth=None, distance='euclidean', thresh=0.0001, n_jobs=1, **kwargs)

	Bases: graphtools.graphs.MNNGraph, graphtools.base.PyGSPGraph

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the MNN kernel.

Build a mutual nearest neighbors kernel.

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, theta=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	theta (array-like or None, optional (default: None)) – if self.theta is a matrix, theta values must be explicitly
specified between Y and each sample in self.data

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
get_params()

	Get parameters from this object

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- adaptive_k
- decay
- distance
- thresh
- beta

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

	
weighted

	

	
class graphtools.graphs.TraditionalGraph(data, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', n_pca=None, thresh=0.0001, precomputed=None, **kwargs)

	Bases: graphtools.base.DataGraph

Traditional weighted adjacency graph

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray, scipy.sparse.spmatrix,
pandas.DataFrame, pandas.SparseDataFrame.
If precomputed is not None, data should be an
[n_samples, n_samples] matrix denoting pairwise distances,
affinities, or edge weights.

	knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to build the graph

	decay (int or None, optional (default: 40)) – Rate of alpha decay to use. If None, alpha decay is not used.

	bandwidth (float, list-like,`callable`, or None, optional (default: None)) – Fixed bandwidth to use. If given, overrides knn. Can be a single
bandwidth, list-like (shape=[n_samples]) of bandwidths for each
sample, or a callable that takes in a n x m matrix and returns a
a single value or list-like of length n (shape=[n_samples])

	bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

	distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance can be used
distance metric for building kNN graph.
TODO: actually sklearn.neighbors has even more choices

	n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to retain for graph building.
If n_pca in [None,False,0], uses the original data.
If True then estimate using a singular value threshold
Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

	rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when estimating rank for
n_pca in [True, ‘auto’].
Note that the default kwarg is None for this parameter.
It is subsequently parsed to ‘auto’ if necessary.
If ‘auto’, this threshold is
smax * np.finfo(data.dtype).eps * max(data.shape)
where smax is the maximum singular value of the data matrix.
For reference, see, e.g.
W. Press, S. Teukolsky, W. Vetterling and B. Flannery,
“Numerical Recipes (3rd edition)”,
Cambridge University Press, 2007, page 795.

	thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay kernel.
All affinities below thresh will be set to zero in order to save
on time and memory constraints.

	precomputed ({‘distance’, ‘affinity’, ‘adjacency’, None},) – optional (default: None)
If the graph is precomputed, this variable denotes which graph
matrix is provided as data.
Only one of precomputed and n_pca can be set.

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
If precomputed is not None, the appropriate steps in the kernel
building process are skipped.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	Raises

	ValueError: if precomputed is not an acceptable value

	
build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	Raises

	
	ValueError: if precomputed is not None, then the graph cannot

	be extended.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Invalid parameters: (these would require modifying the kernel matrix)
- precomputed
- distance
- knn
- decay
- bandwidth
- bandwidth_scale

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
weighted

	

	
class graphtools.graphs.TraditionalLandmarkGraph(data, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', n_pca=None, thresh=0.0001, precomputed=None, **kwargs)

	Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
If precomputed is not None, the appropriate steps in the kernel
building process are skipped.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	Raises

	ValueError: if precomputed is not an acceptable value

	
build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	Raises

	
	ValueError: if precomputed is not None, then the graph cannot

	be extended.

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Invalid parameters: (these would require modifying the kernel matrix)
- precomputed
- distance
- knn
- decay
- bandwidth
- bandwidth_scale

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
weighted

	

	
class graphtools.graphs.TraditionalLandmarkPyGSPGraph(data, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', n_pca=None, thresh=0.0001, precomputed=None, **kwargs)

	Bases: graphtools.graphs.TraditionalGraph, graphtools.graphs.LandmarkGraph, graphtools.base.PyGSPGraph

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
If precomputed is not None, the appropriate steps in the kernel
building process are skipped.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	Raises

	ValueError: if precomputed is not an acceptable value

	
build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	Raises

	
	ValueError: if precomputed is not None, then the graph cannot

	be extended.

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
get_params()

	Get parameters from this object

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Invalid parameters: (these would require modifying the kernel matrix)
- precomputed
- distance
- knn
- decay
- bandwidth
- bandwidth_scale

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

	
weighted

	

	
class graphtools.graphs.TraditionalPyGSPGraph(data, knn=5, decay=40, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', n_pca=None, thresh=0.0001, precomputed=None, **kwargs)

	Bases: graphtools.graphs.TraditionalGraph, graphtools.base.PyGSPGraph

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
If precomputed is not None, the appropriate steps in the kernel
building process are skipped.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	Raises

	ValueError: if precomputed is not an acceptable value

	
build_kernel_to_data(Y, knn=None, bandwidth=None, bandwidth_scale=None)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	Raises

	
	ValueError: if precomputed is not None, then the graph cannot

	be extended.

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
get_params()

	Get parameters from this object

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Invalid parameters: (these would require modifying the kernel matrix)
- precomputed
- distance
- knn
- decay
- bandwidth
- bandwidth_scale

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

	
weighted

	

	
class graphtools.graphs.kNNGraph(data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', thresh=0.0001, n_pca=None, **kwargs)

	Bases: graphtools.base.DataGraph

K nearest neighbors graph

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray, scipy.sparse.spmatrix,
pandas.DataFrame, pandas.SparseDataFrame.

	knn (int, optional (default: 5)) – Number of nearest neighbors (including self) to use to build the graph

	decay (int or None, optional (default: None)) – Rate of alpha decay to use. If None, alpha decay is not used.

	bandwidth (float, list-like,`callable`, or None,) – optional (default: None)
Fixed bandwidth to use. If given, overrides knn. Can be a single
bandwidth, or a list-like (shape=[n_samples]) of bandwidths for each
sample

	bandwidth_scale (float, optional (default : 1.0)) – Rescaling factor for bandwidth.

	distance (str, optional (default: ‘euclidean’)) – Any metric from scipy.spatial.distance can be used
distance metric for building kNN graph. Custom distance
functions of form f(x, y) = d are also accepted.
TODO: actually sklearn.neighbors has even more choices

	thresh (float, optional (default: 1e-4)) – Threshold above which to calculate alpha decay kernel.
All affinities below thresh will be set to zero in order to save
on time and memory constraints.

	
knn_tree

	The fitted KNN tree. (cached)
TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

	Type

	sklearn.neighbors.NearestNeighbors

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

	Build a kernel from new input data Y to the self.data

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	knn (int or None, optional (default: None)) – If None, defaults to self.knn

	bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to self.bandwidth

	bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

	Returns

	K_yx – kernel matrix where each row represents affinities of a single
sample in Y to all samples in self.data.

	Return type

	array-like, [n_samples_y, n_samples]

	Raises

	ValueError: if the supplied data is the wrong shape

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
knn_tree

	KNN tree object (cached)

Builds or returns the fitted KNN tree.
TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

	Returns

	knn_tree

	Return type

	sklearn.neighbors.NearestNeighbors

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- knn_max
- decay
- bandwidth
- bandwidth_scale
- distance
- thresh

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
weighted

	

	
class graphtools.graphs.kNNLandmarkGraph(data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', thresh=0.0001, n_pca=None, **kwargs)

	Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

	Build a kernel from new input data Y to the self.data

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	knn (int or None, optional (default: None)) – If None, defaults to self.knn

	bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to self.bandwidth

	bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

	Returns

	K_yx – kernel matrix where each row represents affinities of a single
sample in Y to all samples in self.data.

	Return type

	array-like, [n_samples_y, n_samples]

	Raises

	ValueError: if the supplied data is the wrong shape

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
knn_tree

	KNN tree object (cached)

Builds or returns the fitted KNN tree.
TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

	Returns

	knn_tree

	Return type

	sklearn.neighbors.NearestNeighbors

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- knn_max
- decay
- bandwidth
- bandwidth_scale
- distance
- thresh

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
weighted

	

	
class graphtools.graphs.kNNLandmarkPyGSPGraph(data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', thresh=0.0001, n_pca=None, **kwargs)

	Bases: graphtools.graphs.kNNGraph, graphtools.graphs.LandmarkGraph, graphtools.base.PyGSPGraph

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

	Build a kernel from new input data Y to the self.data

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	knn (int or None, optional (default: None)) – If None, defaults to self.knn

	bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to self.bandwidth

	bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

	Returns

	K_yx – kernel matrix where each row represents affinities of a single
sample in Y to all samples in self.data.

	Return type

	array-like, [n_samples_y, n_samples]

	Raises

	ValueError: if the supplied data is the wrong shape

	
build_landmark_op()

	Build the landmark operator

Calculates spectral clusters on the kernel, and calculates transition
probabilities between cluster centers by using transition probabilities
between samples assigned to each cluster.

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
clusters

	Cluster assignments for each sample.

Compute or return the cluster assignments

	Returns

	clusters – Cluster assignments for each sample.

	Return type

	list-like, shape=[n_samples]

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extend_to_data(data, **kwargs)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of landmarks. Any
transformation of the landmarks can be trivially applied to Y by
performing

transform_Y = transitions.dot(transform)

	Parameters

	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, self.data.shape[0]]

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
get_params()

	Get parameters from this object

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
knn_tree

	KNN tree object (cached)

Builds or returns the fitted KNN tree.
TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

	Returns

	knn_tree

	Return type

	sklearn.neighbors.NearestNeighbors

	
landmark_op

	Landmark operator

Compute or return the landmark operator

	Returns

	landmark_op – Landmark operator. Can be treated as a diffusion operator between
landmarks.

	Return type

	array-like, shape=[n_landmark, n_landmark]

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- knn_max
- decay
- bandwidth
- bandwidth_scale
- distance
- thresh

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
transitions

	Transition matrix from samples to landmarks

Compute the landmark operator if necessary, then return the
transition matrix.

	Returns

	transitions – Transition probabilities between samples and landmarks.

	Return type

	array-like, shape=[n_samples, n_landmark]

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

	
weighted

	

	
class graphtools.graphs.kNNPyGSPGraph(data, knn=5, decay=None, knn_max=None, search_multiplier=6, bandwidth=None, bandwidth_scale=1.0, distance='euclidean', thresh=0.0001, n_pca=None, **kwargs)

	Bases: graphtools.graphs.kNNGraph, graphtools.base.PyGSPGraph

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the KNN kernel.

Build a k nearest neighbors kernel, optionally with alpha decay.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y, knn=None, knn_max=None, bandwidth=None, bandwidth_scale=None)

	Build a kernel from new input data Y to the self.data

	Parameters

	
	Y (array-like, [n_samples_y, n_features]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	knn (int or None, optional (default: None)) – If None, defaults to self.knn

	bandwidth (float, callable, or None, optional (default: None)) – If None, defaults to self.bandwidth

	bandwidth_scale (float, optional (default : None)) – Rescaling factor for bandwidth.
If None, defaults to self.bandwidth_scale

	Returns

	K_yx – kernel matrix where each row represents affinities of a single
sample in Y to all samples in self.data.

	Return type

	array-like, [n_samples_y, n_samples]

	Raises

	ValueError: if the supplied data is the wrong shape

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
get_params()

	Get parameters from this object

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
knn_tree

	KNN tree object (cached)

Builds or returns the fitted KNN tree.
TODO: can we be more clever than sklearn when it comes to choosing
between KD tree, ball tree and brute force?

	Returns

	knn_tree

	Return type

	sklearn.neighbors.NearestNeighbors

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- random_state
- verbose
Invalid parameters: (these would require modifying the kernel matrix)
- knn
- knn_max
- decay
- bandwidth
- bandwidth_scale
- distance
- thresh

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

	
weighted

	

Base Classes

	
class graphtools.base.Base

	Bases: object

Class that deals with key-word arguments but is otherwise
just an object.

	
set_params(**kwargs)

	

	
class graphtools.base.BaseGraph(kernel_symm='+', theta=None, anisotropy=0, gamma=None, initialize=True, **kwargs)

	Bases: graphtools.base.Base

Parent graph class

	Parameters

	
	kernel_symm (string, optional (default: '+')) – Defines method of kernel symmetrization.
‘+’ : additive
‘*’ : multiplicative
‘mnn’ : min-max MNN symmetrization
‘none’ : no symmetrization

	theta (float (default: 1)) – Min-max symmetrization constant.
K = theta * min(K, K.T) + (1 - theta) * max(K, K.T)

	anisotropy (float, optional (default: 0)) – Level of anisotropy between 0 and 1
(alpha in Coifman & Lafon, 2006)

	initialize (bool, optional (default : True)) – if false, don’t create the kernel matrix.

	
K

	kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Type

	array-like, shape=[n_samples, n_samples]

	
kernel

	
	Type

	synonym for K

	
P

	diffusion operator defined as a row-stochastic form
of the kernel matrix

	Type

	array-like, shape=[n_samples, n_samples] (cached)

	
diff_op

	
	Type

	synonym for P

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the kernel matrix

Abstract method that all child classes must implement.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
get_params()

	Get parameters from this object

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
Invalid parameters: (these would require modifying the kernel matrix)
- kernel_symm
- theta

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
weighted

	

	
class graphtools.base.Data(data, n_pca=None, rank_threshold=None, random_state=None, **kwargs)

	Bases: graphtools.base.Base

Parent class that handles the import and dimensionality reduction of data

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray, scipy.sparse.spmatrix.
pandas.DataFrame, pandas.SparseDataFrame.

	n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to retain for graph building.
If n_pca in [None, False, 0], uses the original data.
If ‘auto’ or True then estimate using a singular value threshold
Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

	rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when estimating rank for
n_pca in [True, ‘auto’].
If ‘auto’, this threshold is
s_max * eps * max(n_samples, n_features)
where s_max is the maximum singular value of the data matrix
and eps is numerical precision. [press2007].

	random_state (int or None, optional (default: None)) – Random state for random PCA

	
data

	Original data matrix

	Type

	array-like, shape=[n_samples,n_features]

	
n_pca

	
	Type

	int or None

	
data_nu

	Reduced data matrix

	Type

	array-like, shape=[n_samples,n_pca]

	
data_pca

	sklearn PCA operator

	Type

	sklearn.decomposition.PCA or sklearn.decomposition.TruncatedSVD

	
get_params()

	Get parameters from this object

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_pca
- random_state

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
class graphtools.base.DataGraph(data, verbose=True, n_jobs=1, **kwargs)

	Bases: graphtools.base.Data, graphtools.base.BaseGraph

Abstract class for graphs built from a dataset

	Parameters

	
	data (array-like, shape=[n_samples,n_features]) – accepted types: numpy.ndarray, scipy.sparse.spmatrix.

	n_pca ({int, None, bool, ‘auto’}, optional (default: None)) – number of PC dimensions to retain for graph building.
If n_pca in [None,False,0], uses the original data.
If True then estimate using a singular value threshold
Note: if data is sparse, uses SVD instead of PCA
TODO: should we subtract and store the mean?

	rank_threshold (float, ‘auto’, optional (default: ‘auto’)) – threshold to use when estimating rank for
n_pca in [True, ‘auto’].
Note that the default kwarg is None for this parameter.
It is subsequently parsed to ‘auto’ if necessary.
If ‘auto’, this threshold is
smax * np.finfo(data.dtype).eps * max(data.shape)
where smax is the maximum singular value of the data matrix.
For reference, see, e.g.
W. Press, S. Teukolsky, W. Vetterling and B. Flannery,
“Numerical Recipes (3rd edition)”,
Cambridge University Press, 2007, page 795.

	random_state (int or None, optional (default: None)) – Random state for random PCA and graph building

	verbose (bool, optional (default: True)) – Verbosity.

	n_jobs (int, optional (default : 1)) – The number of jobs to use for the computation.
If -1 all CPUs are used. If 1 is given, no parallel computing code is
used at all, which is useful for debugging.
For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for
n_jobs = -2, all CPUs but one are used

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
P

	Diffusion operator (cached)

Return or calculate the diffusion operator

	Returns

	P – diffusion operator defined as a row-stochastic form
of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
apply_anisotropy(K)

	

	
build_kernel()

	Build the kernel matrix

Abstract method that all child classes must implement.
Must return a symmetric matrix

	Returns

	K – symmetric matrix with ones down the diagonal
with no non-negative entries.

	Return type

	kernel matrix, shape=[n_samples, n_samples]

	
build_kernel_to_data(Y)

	Build a kernel from new input data Y to the self.data

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	K_yx – kernel matrix where each row represents affinities of a single
sample in Y to all samples in self.data.

	Return type

	array-like, [n_samples_y, n_samples]

	Raises

	
	ValueError: if this Graph is not capable of extension or

	if the supplied data is the wrong shape

	
diff_aff

	Symmetric diffusion affinity matrix

Return or calculate the symmetric diffusion affinity matrix

\[A(x,y) = K(x,y) (d(x) d(y))^{-1/2}\]

where \(d\) is the degrees (row sums of the kernel.)

	Returns

	diff_aff – symmetric diffusion affinity matrix defined as a
doubly-stochastic form of the kernel matrix

	Return type

	array-like, shape=[n_samples, n_samples]

	
diff_op

	Synonym for P

	
extend_to_data(Y)

	Build transition matrix from new data to the graph

Creates a transition matrix such that Y can be approximated by
a linear combination of samples in self.data. Any
transformation of self.data can be trivially applied to Y by
performing

transform_Y = self.interpolate(transform, transitions)

	Parameters

	Y (array-like, [n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	transitions – Transition matrix from Y to self.data

	Return type

	array-like, shape=[n_samples_y, self.data.shape[0]]

	
get_params()

	Get parameters from this object

	
interpolate(transform, transitions=None, Y=None)

	Interpolate new data onto a transformation of the graph data

One of either transitions or Y should be provided

	Parameters

	
	transform (array-like, shape=[n_samples, n_transform_features]) –

	transitions (array-like, optional, shape=[n_samples_y, n_samples]) – Transition matrix from Y (not provided) to self.data

	Y (array-like, optional, shape=[n_samples_y, n_dimensions]) – new data for which an affinity matrix is calculated
to the existing data. n_features must match
either the ambient or PCA dimensions

	Returns

	Y_transform – Transition matrix from Y to self.data

	Return type

	array-like, [n_samples_y, n_features or n_pca]

	Raises

	ValueError: if neither transitions nor Y is provided

	
inverse_transform(Y, columns=None)

	Transform input data Y to ambient data space defined by self.data

Takes data in the same reduced space as self.data_nu and transforms
it to be in the same ambient space as self.data.

	Parameters

	
	Y (array-like, shape=[n_samples_y, n_pca]) – n_features must be the same as self.data_nu.

	columns (list-like) – list of integers referring to column indices in the original data
space to be returned. Avoids recomputing the full matrix where only
a few dimensions of the ambient space are of interest

	Returns

	

	Return type

	Inverse transformed data, shape=[n_samples_y, n_features]

	Raises

	ValueError : if Y.shape[1] != self.data_nu.shape[1]

	
kernel

	Synonym for K

	
kernel_degree

	Weighted degree vector (cached)

Return or calculate the degree vector from the affinity matrix

	Returns

	degrees – Row sums of graph kernel

	Return type

	array-like, shape=[n_samples]

	
set_params(**params)

	Set parameters on this object

Safe setter method - attributes should not be modified directly as some
changes are not valid.
Valid parameters:
- n_jobs
- verbose

	Parameters

	params (key-value pairs of parameter name and new values) –

	Returns

	

	Return type

	self

	
shortest_path(method='auto', distance=None)

	Find the length of the shortest path between every pair of vertices on the graph

	Parameters

	
	method (string ['auto'|'FW'|'D']) – method to use. Options are
‘auto’ : attempt to choose the best method for the current problem
‘FW’ : Floyd-Warshall algorithm. O[N^3]
‘D’ : Dijkstra’s algorithm with Fibonacci stacks. O[(k+log(N))N^2]

	distance ({'constant', 'data', 'affinity'}, optional (default: 'data')) – Distances along kNN edges.
‘constant’ gives constant edge lengths.
‘data’ gives distances in ambient data space.
‘affinity’ gives distances as negative log affinities.

	Returns

	D – D[i,j] gives the shortest distance from point i to point j
along the graph. If no path exists, the distance is np.inf

	Return type

	np.ndarray, float, shape = [N,N]

Notes

Currently, shortest paths can only be calculated on kNNGraphs with
decay=None

	
symmetrize_kernel(K)

	

	
to_igraph(attribute='weight', **kwargs)

	Convert to an igraph Graph

Uses the igraph.Graph constructor

	Parameters

	
	attribute (str, optional (default: "weight")) –

	kwargs (additional arguments for igraph.Graph) –

	
to_pickle(path)

	Save the current Graph to a pickle.

	Parameters

	path (str) – File path where the pickled object will be stored.

	
to_pygsp(**kwargs)

	Convert to a PyGSP graph

For use only when the user means to create the graph using
the flag use_pygsp=True, and doesn’t wish to recompute the kernel.
Creates a graphtools.graphs.TraditionalGraph with a precomputed
affinity matrix which also inherits from pygsp.graphs.Graph.

	Parameters

	kwargs – keyword arguments for graphtools.Graph

	Returns

	G

	Return type

	graphtools.base.PyGSPGraph, graphtools.graphs.TraditionalGraph

	
transform(Y)

	Transform input data Y to reduced data space defined by self.data

Takes data in the same ambient space as self.data and transforms it
to be in the same reduced space as self.data_nu.

	Parameters

	Y (array-like, shape=[n_samples_y, n_features]) – n_features must be the same as self.data.

	Returns

	

	Return type

	Transformed data, shape=[n_samples_y, n_pca]

	Raises

	ValueError : if Y.shape[1] != self.data.shape[1]

	
weighted

	

	
class graphtools.base.PyGSPGraph(lap_type='combinatorial', coords=None, plotting=None, **kwargs)

	Bases: pygsp.graphs.graph.Graph, graphtools.base.Base

Interface between BaseGraph and PyGSP.

All graphs should possess these matrices. We inherit a lot
of functionality from pygsp.graphs.Graph.

There is a lot of overhead involved in having both a weight and
kernel matrix

	
A

	Graph adjacency matrix (the binary version of W).

The adjacency matrix defines which edges exist on the graph.
It is represented as an N-by-N matrix of booleans.
\(A_{i,j}\) is True if \(W_{i,j} > 0\).

	
D

	Differential operator (for gradient and divergence).

Is computed by compute_differential_operator().

	
K

	Kernel matrix

	Returns

	K – kernel matrix defined as the adjacency matrix with
ones down the diagonal

	Return type

	array-like, shape=[n_samples, n_samples]

	
U

	Fourier basis (eigenvectors of the Laplacian).

Is computed by compute_fourier_basis().

	
check_weights()

	Check the characteristics of the weights matrix.

	Returns

	
	A dict of bools containing informations about the matrix

	has_inf_val (bool) – True if the matrix has infinite values else false

	has_nan_value (bool) – True if the matrix has a “not a number” value else false

	is_not_square (bool) – True if the matrix is not square else false

	diag_is_not_zero (bool) – True if the matrix diagonal has not only zeros else false

Examples

>>> W = np.arange(4).reshape(2, 2)
>>> G = graphs.Graph(W)
>>> cw = G.check_weights()
>>> cw == {'has_inf_val': False, 'has_nan_value': False,
... 'is_not_square': False, 'diag_is_not_zero': True}
True

	
compute_differential_operator()

	Compute the graph differential operator (cached).

The differential operator is a matrix such that

\[L = D^T D,\]

where \(D\) is the differential operator and \(L\) is the graph
Laplacian. It is used to compute the gradient and the divergence of a
graph signal, see grad() and div().

The result is cached and accessible by the D property.

See also

	grad()

	compute the gradient

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> G.compute_differential_operator()
>>> G.D.shape == (G.Ne, G.N)
True

	
compute_fourier_basis(recompute=False)

	Compute the Fourier basis of the graph (cached).

The result is cached and accessible by the U, e,
lmax, and mu properties.

	Parameters

	recompute (bool) – Force to recompute the Fourier basis if already existing.

Notes

‘G.compute_fourier_basis()’ computes a full eigendecomposition of
the graph Laplacian \(L\) such that:

\[L = U \Lambda U^*,\]

where \(\Lambda\) is a diagonal matrix of eigenvalues and the
columns of \(U\) are the eigenvectors.

G.e is a vector of length G.N containing the Laplacian
eigenvalues. The largest eigenvalue is stored in G.lmax.
The eigenvectors are stored as column vectors of G.U in the same
order that the eigenvalues. Finally, the coherence of the
Fourier basis is found in G.mu.

References

See [chung1997spectral].

Examples

>>> G = graphs.Torus()
>>> G.compute_fourier_basis()
>>> G.U.shape
(256, 256)
>>> G.e.shape
(256,)
>>> G.lmax == G.e[-1]
True
>>> G.mu < 1
True

	
compute_laplacian(lap_type='combinatorial')

	Compute a graph Laplacian.

The result is accessible by the L attribute.

	Parameters

	lap_type ('combinatorial', 'normalized') – The type of Laplacian to compute. Default is combinatorial.

Notes

For undirected graphs, the combinatorial Laplacian is defined as

\[L = D - W,\]

where \(W\) is the weight matrix and \(D\) the degree matrix,
and the normalized Laplacian is defined as

\[L = I - D^{-1/2} W D^{-1/2},\]

where \(I\) is the identity matrix.

Examples

>>> G = graphs.Sensor(50)
>>> G.L.shape
(50, 50)
>>>
>>> G.compute_laplacian('combinatorial')
>>> G.compute_fourier_basis()
>>> -1e-10 < G.e[0] < 1e-10 # Smallest eigenvalue close to 0.
True
>>>
>>> G.compute_laplacian('normalized')
>>> G.compute_fourier_basis(recompute=True)
>>> -1e-10 < G.e[0] < 1e-10 < G.e[-1] < 2 # Spectrum in [0, 2].
True

	
d

	The degree (the number of neighbors) of each node.

	
div(s)

	Compute the divergence of a graph signal.

The divergence of a signal \(s\) is defined as

\[y = D^T s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.Ne/2 living on the edges (non-directed graph).

	Returns

	s_div – Divergence signal of length G.N living on the nodes.

	Return type

	ndarray

See also

compute_differential_operator()

	grad()

	compute the gradient

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.Ne)
>>> s_div = G.div(s)
>>> s_grad = G.grad(s_div)

	
dw

	The weighted degree (the sum of weighted edges) of each node.

	
e

	Eigenvalues of the Laplacian (square of graph frequencies).

Is computed by compute_fourier_basis().

	
estimate_lmax(recompute=False)

	Estimate the Laplacian’s largest eigenvalue (cached).

The result is cached and accessible by the lmax property.

Exact value given by the eigendecomposition of the Laplacian, see
compute_fourier_basis(). That estimation is much faster than the
eigendecomposition.

	Parameters

	recompute (boolean) – Force to recompute the largest eigenvalue. Default is false.

Notes

Runs the implicitly restarted Lanczos method with a large tolerance,
then increases the calculated largest eigenvalue by 1 percent. For much
of the PyGSP machinery, we need to approximate wavelet kernels on an
interval that contains the spectrum of L. The only cost of using a
larger interval is that the polynomial approximation over the larger
interval may be a slightly worse approximation on the actual spectrum.
As this is a very mild effect, it is not necessary to obtain very tight
bounds on the spectrum of L.

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> print('{:.2f}'.format(G.lmax))
13.78
>>> G = graphs.Logo()
>>> G.estimate_lmax(recompute=True)
>>> print('{:.2f}'.format(G.lmax))
13.92

	
extract_components()

	Split the graph into connected components.

See is_connected() for the method used to determine
connectedness.

	Returns

	graphs – A list of graph structures. Each having its own node list and
weight matrix. If the graph is directed, add into the info
parameter the information about the source nodes and the sink
nodes.

	Return type

	list

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> W = utils.symmetrize(W)
>>> G = graphs.Graph(W=W)
>>> components = G.extract_components()
>>> has_sinks = 'sink' in components[0].info
>>> sinks_0 = components[0].info['sink'] if has_sinks else []

	
get_edge_list()

	Return an edge list, an alternative representation of the graph.

The weighted adjacency matrix is the canonical form used in this
package to represent a graph as it is the easiest to work with when
considering spectral methods.

	Returns

	
	v_in (vector of int)

	v_out (vector of int)

	weights (vector of float)

Examples

>>> G = graphs.Logo()
>>> v_in, v_out, weights = G.get_edge_list()
>>> v_in.shape, v_out.shape, weights.shape
((3131,), (3131,), (3131,))

	
gft(s)

	Compute the graph Fourier transform.

The graph Fourier transform of a signal \(s\) is defined as

\[\hat{s} = U^* s,\]

where \(U\) is the Fourier basis attr:U and \(U^*\) denotes
the conjugate transpose or Hermitian transpose of \(U\).

	Parameters

	s (ndarray) – Graph signal in the vertex domain.

	Returns

	s_hat – Representation of s in the Fourier domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s = np.random.normal(size=(G.N, 5, 1))
>>> s_hat = G.gft(s)
>>> s_star = G.igft(s_hat)
>>> np.all((s - s_star) < 1e-10)
True

	
gft_windowed(g, f, lowmemory=True)

	Windowed graph Fourier transform.

	Parameters

	
	g (ndarray or Filter) – Window (graph signal or kernel).

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory (default=True).

	Returns

	C – Coefficients.

	Return type

	ndarray

	
gft_windowed_gabor(s, k)

	Gabor windowed graph Fourier transform.

	Parameters

	
	s (ndarray) – Graph signal in the vertex domain.

	k (function) – Gabor kernel. See pygsp.filters.Gabor.

	Returns

	s – Vertex-frequency representation of the signals.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> s = np.random.normal(size=(G.N, 2))
>>> s = G.gft_windowed_gabor(s, lambda x: x/(1.-x))
>>> s.shape
(1130, 2, 1130)

	
gft_windowed_normalized(g, f, lowmemory=True)

	Normalized windowed graph Fourier transform.

	Parameters

	
	g (ndarray) – Window.

	f (ndarray) – Graph signal in the vertex domain.

	lowmemory (bool) – Use less memory. (default = True)

	Returns

	C – Coefficients.

	Return type

	ndarray

	
grad(s)

	Compute the gradient of a graph signal.

The gradient of a signal \(s\) is defined as

\[y = D s,\]

where \(D\) is the differential operator D.

	Parameters

	s (ndarray) – Signal of length G.N living on the nodes.

	Returns

	s_grad – Gradient signal of length G.Ne/2 living on the edges (non-directed
graph).

	Return type

	ndarray

See also

compute_differential_operator()

	div()

	compute the divergence

Examples

>>> G = graphs.Logo()
>>> G.N, G.Ne
(1130, 3131)
>>> s = np.random.normal(size=G.N)
>>> s_grad = G.grad(s)
>>> s_div = G.div(s_grad)
>>> np.linalg.norm(s_div - G.L.dot(s)) < 1e-10
True

	
igft(s_hat)

	Compute the inverse graph Fourier transform.

The inverse graph Fourier transform of a Fourier domain signal
\(\hat{s}\) is defined as

\[s = U \hat{s},\]

where \(U\) is the Fourier basis U.

	Parameters

	s_hat (ndarray) – Graph signal in the Fourier domain.

	Returns

	s – Representation of s_hat in the vertex domain.

	Return type

	ndarray

Examples

>>> G = graphs.Logo()
>>> G.compute_fourier_basis()
>>> s_hat = np.random.normal(size=(G.N, 5, 1))
>>> s = G.igft(s_hat)
>>> s_hat_star = G.gft(s)
>>> np.all((s_hat - s_hat_star) < 1e-10)
True

	
is_connected(recompute=False)

	Check the strong connectivity of the graph (cached).

It uses DFS travelling on graph to ensure that each node is visited.
For undirected graphs, starting at any vertex and trying to access all
others is enough.
For directed graphs, one needs to check that a random vertex is
accessible by all others
and can access all others. Thus, we can transpose the adjacency matrix
and compute again with the same starting point in both phases.

	Parameters

	recompute (bool) – Force to recompute the connectivity if already known.

	Returns

	connected – True if the graph is connected.

	Return type

	bool

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> connected = G.is_connected()

	
is_directed(recompute=False)

	Check if the graph has directed edges (cached).

In this framework, we consider that a graph is directed if and
only if its weight matrix is non symmetric.

	Parameters

	recompute (bool) – Force to recompute the directedness if already known.

	Returns

	directed – True if the graph is directed.

	Return type

	bool

Notes

Can also be used to check if a matrix is symmetrical

Examples

>>> from scipy import sparse
>>> W = sparse.rand(10, 10, 0.2)
>>> G = graphs.Graph(W=W)
>>> directed = G.is_directed()

	
lmax

	Largest eigenvalue of the graph Laplacian.

Can be exactly computed by compute_fourier_basis() or
approximated by estimate_lmax().

	
modulate(f, k)

	Modulate the signal f to the frequency k.

	Parameters

	
	f (ndarray) – Signal (column)

	k (int) – Index of frequencies

	Returns

	fm – Modulated signal

	Return type

	ndarray

	
mu

	Coherence of the Fourier basis.

Is computed by compute_fourier_basis().

	
plot(**kwargs)

	Plot the graph.

See pygsp.plotting.plot_graph().

	
plot_signal(signal, **kwargs)

	Plot a signal on that graph.

See pygsp.plotting.plot_signal().

	
plot_spectrogram(**kwargs)

	Plot the graph’s spectrogram.

See pygsp.plotting.plot_spectrogram().

	
set_coordinates(kind='spring', **kwargs)

	Set node’s coordinates (their position when plotting).

	Parameters

	
	kind (string or array-like) – Kind of coordinates to generate. It controls the position of the
nodes when plotting the graph. Can either pass an array of size Nx2
or Nx3 to set the coordinates manually or the name of a layout
algorithm. Available algorithms: community2D, random2D, random3D,
ring2D, line1D, spring. Default is ‘spring’.

	kwargs (dict) – Additional parameters to be passed to the Fruchterman-Reingold
force-directed algorithm when kind is spring.

Examples

>>> G = graphs.ErdosRenyi()
>>> G.set_coordinates()
>>> G.plot()

	
set_params(**kwargs)

	

	
subgraph(ind)

	Create a subgraph given indices.

	Parameters

	ind (list) – Nodes to keep

	Returns

	sub_G – Subgraph

	Return type

	Graph

Examples

>>> W = np.arange(16).reshape(4, 4)
>>> G = graphs.Graph(W)
>>> ind = [1, 3]
>>> sub_G = G.subgraph(ind)

	
translate(f, i)

	Translate the signal f to the node i.

	Parameters

	
	f (ndarray) – Signal

	i (int) – Indices of vertex

	Returns

	ft

	Return type

	translate signal

Utilities

	
graphtools.utils.check_between(v_min, v_max, **params)

	Checks parameters are in a specified range

	Parameters

	
	v_min (float, minimum allowed value (inclusive)) –

	v_max (float, maximum allowed value (inclusive)) –

	params (object) – Named arguments, parameters to be checked

	Raises

	ValueError : unacceptable choice of parameters

	
graphtools.utils.check_greater(x, **params)

	Check that parameters are greater than x as expected

	Parameters

	x (excepted boundary) – Checks not run if parameters are greater than x

	Raises

	ValueError : unacceptable choice of parameters

	
graphtools.utils.check_if_not(x, *checks, **params)

	Run checks only if parameters are not equal to a specified value

	Parameters

	
	x (excepted value) – Checks not run if parameters equal x

	checks (function) – Unnamed arguments, check functions to be run

	params (object) – Named arguments, parameters to be checked

	Raises

	ValueError : unacceptable choice of parameters

	
graphtools.utils.check_in(choices, **params)

	Checks parameters are in a list of allowed parameters

	Parameters

	
	choices (array-like, accepted values) –

	params (object) – Named arguments, parameters to be checked

	Raises

	ValueError : unacceptable choice of parameters

	
graphtools.utils.check_int(**params)

	Check that parameters are integers as expected

	Raises

	ValueError : unacceptable choice of parameters

	
graphtools.utils.check_positive(**params)

	Check that parameters are positive as expected

	Raises

	ValueError : unacceptable choice of parameters

	
graphtools.utils.dense_nonzero_discrete(*args, **kwargs)

	

	
graphtools.utils.dense_set_diagonal(*args, **kwargs)

	

	
graphtools.utils.elementwise_maximum(*args, **kwargs)

	

	
graphtools.utils.elementwise_minimum(*args, **kwargs)

	

	
graphtools.utils.if_sparse(*args, **kwargs)

	

	
graphtools.utils.is_Anndata(X)

	

	
graphtools.utils.is_DataFrame(X)

	

	
graphtools.utils.is_SparseDataFrame(X)

	

	
graphtools.utils.matrix_is_equivalent(*args, **kwargs)

	

	
graphtools.utils.nonzero_discrete(*args, **kwargs)

	

	
graphtools.utils.set_diagonal(*args, **kwargs)

	

	
graphtools.utils.set_submatrix(*args, **kwargs)

	

	
graphtools.utils.sparse_maximum(*args, **kwargs)

	

	
graphtools.utils.sparse_minimum(*args, **kwargs)

	

	
graphtools.utils.sparse_nonzero_discrete(*args, **kwargs)

	

	
graphtools.utils.sparse_set_diagonal(*args, **kwargs)

	

	
graphtools.utils.to_array(*args, **kwargs)

	

 Python Module Index

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 graphtools	

 	
 	
 graphtools.api	

 	
 	
 graphtools.base	

 	
 	
 graphtools.graphs	

 	
 	
 graphtools.utils	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	A (graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	apply_anisotropy() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

B

 	
 	Base (class in graphtools.base)

 	BaseGraph (class in graphtools.base)

 	build_kernel() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	build_kernel_to_data() (graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	build_landmark_op() (graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

C

 	
 	check_between() (in module graphtools.utils)

 	check_greater() (in module graphtools.utils)

 	check_if_not() (in module graphtools.utils)

 	check_in() (in module graphtools.utils)

 	check_int() (in module graphtools.utils)

 	check_positive() (in module graphtools.utils)

 	check_weights() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	clusters (graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute), [1]

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	
 	compute_differential_operator() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	compute_fourier_basis() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	compute_laplacian() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

D

 	
 	D (graphtools.base.PyGSPGraph attribute)

 	d (graphtools.base.PyGSPGraph attribute)

 	D (graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	d (graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	D (graphtools.graphs.kNNPyGSPGraph attribute)

 	d (graphtools.graphs.kNNPyGSPGraph attribute)

 	D (graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	d (graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	D (graphtools.graphs.MNNPyGSPGraph attribute)

 	d (graphtools.graphs.MNNPyGSPGraph attribute)

 	D (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	d (graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	D (graphtools.graphs.TraditionalPyGSPGraph attribute)

 	d (graphtools.graphs.TraditionalPyGSPGraph attribute)

 	Data (class in graphtools.base)

 	data (graphtools.base.Data attribute)

 	data_nu (graphtools.base.Data attribute)

 	data_pca (graphtools.base.Data attribute)

 	DataGraph (class in graphtools.base)

 	dense_nonzero_discrete() (in module graphtools.utils)

 	dense_set_diagonal() (in module graphtools.utils)

 	diff_aff (graphtools.base.BaseGraph attribute)

 	(graphtools.base.DataGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	
 	diff_op (graphtools.base.BaseGraph attribute), [1]

 	(graphtools.base.DataGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	div() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	dw (graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

E

 	
 	e (graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	elementwise_maximum() (in module graphtools.utils)

 	elementwise_minimum() (in module graphtools.utils)

 	estimate_lmax() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	extend_to_data() (graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	extract_components() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

F

 	
 	from_igraph() (in module graphtools.api)

G

 	
 	get_edge_list() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	get_params() (graphtools.base.BaseGraph method)

 	(graphtools.base.Data method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	gft() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	gft_windowed() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	gft_windowed_gabor() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	gft_windowed_normalized() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	grad() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	Graph() (in module graphtools.api)

 	graphtools.api (module)

 	graphtools.base (module)

 	graphtools.graphs (module)

 	graphtools.utils (module)

I

 	
 	if_sparse() (in module graphtools.utils)

 	igft() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	interpolate() (graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	inverse_transform() (graphtools.base.Data method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	is_Anndata() (in module graphtools.utils)

 	is_connected() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	is_DataFrame() (in module graphtools.utils)

 	is_directed() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	is_SparseDataFrame() (in module graphtools.utils)

K

 	
 	K (graphtools.base.BaseGraph attribute), [1]

 	(graphtools.base.DataGraph attribute)

 	(graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	kernel (graphtools.base.BaseGraph attribute), [1]

 	(graphtools.base.DataGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	
 	kernel_degree (graphtools.base.BaseGraph attribute)

 	(graphtools.base.DataGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	knn_tree (graphtools.graphs.kNNGraph attribute), [1]

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	kNNGraph (class in graphtools.graphs)

 	kNNLandmarkGraph (class in graphtools.graphs)

 	kNNLandmarkPyGSPGraph (class in graphtools.graphs)

 	kNNPyGSPGraph (class in graphtools.graphs)

L

 	
 	landmark_op (graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute), [1]

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	
 	LandmarkGraph (class in graphtools.graphs)

 	lmax (graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

M

 	
 	matrix_is_equivalent() (in module graphtools.utils)

 	MNNGraph (class in graphtools.graphs)

 	MNNLandmarkGraph (class in graphtools.graphs)

 	MNNLandmarkPyGSPGraph (class in graphtools.graphs)

 	MNNPyGSPGraph (class in graphtools.graphs)

 	modulate() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	mu (graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

N

 	
 	n_pca (graphtools.base.Data attribute)

 	
 	nonzero_discrete() (in module graphtools.utils)

P

 	
 	P (graphtools.base.BaseGraph attribute), [1]

 	(graphtools.base.DataGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

 	plot() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	plot_signal() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	plot_spectrogram() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	PyGSPGraph (class in graphtools.base)

R

 	
 	read_pickle() (in module graphtools.api)

S

 	
 	set_coordinates() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	set_diagonal() (in module graphtools.utils)

 	set_params() (graphtools.base.Base method)

 	(graphtools.base.BaseGraph method)

 	(graphtools.base.Data method)

 	(graphtools.base.DataGraph method)

 	(graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	set_submatrix() (in module graphtools.utils)

 	shortest_path() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	sparse_maximum() (in module graphtools.utils)

 	sparse_minimum() (in module graphtools.utils)

 	sparse_nonzero_discrete() (in module graphtools.utils)

 	sparse_set_diagonal() (in module graphtools.utils)

 	subgraph() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	subgraphs (graphtools.graphs.MNNGraph attribute)

 	symmetrize_kernel() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

T

 	
 	to_array() (in module graphtools.utils)

 	to_igraph() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	to_pickle() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	to_pygsp() (graphtools.base.BaseGraph method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	
 	TraditionalGraph (class in graphtools.graphs)

 	TraditionalLandmarkGraph (class in graphtools.graphs)

 	TraditionalLandmarkPyGSPGraph (class in graphtools.graphs)

 	TraditionalPyGSPGraph (class in graphtools.graphs)

 	transform() (graphtools.base.Data method)

 	(graphtools.base.DataGraph method)

 	(graphtools.graphs.LandmarkGraph method)

 	(graphtools.graphs.MNNGraph method)

 	(graphtools.graphs.MNNLandmarkGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalGraph method)

 	(graphtools.graphs.TraditionalLandmarkGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNGraph method)

 	(graphtools.graphs.kNNLandmarkGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

 	transitions (graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute), [1]

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	translate() (graphtools.base.PyGSPGraph method)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.MNNPyGSPGraph method)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph method)

 	(graphtools.graphs.TraditionalPyGSPGraph method)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph method)

 	(graphtools.graphs.kNNPyGSPGraph method)

U

 	
 	U (graphtools.base.PyGSPGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

W

 	
 	weighted (graphtools.base.BaseGraph attribute)

 	(graphtools.base.DataGraph attribute)

 	(graphtools.graphs.LandmarkGraph attribute)

 	(graphtools.graphs.MNNGraph attribute)

 	(graphtools.graphs.MNNLandmarkGraph attribute)

 	(graphtools.graphs.MNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.MNNPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkGraph attribute)

 	(graphtools.graphs.TraditionalLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.TraditionalPyGSPGraph attribute)

 	(graphtools.graphs.kNNGraph attribute)

 	(graphtools.graphs.kNNLandmarkGraph attribute)

 	(graphtools.graphs.kNNLandmarkPyGSPGraph attribute)

 	(graphtools.graphs.kNNPyGSPGraph attribute)

nav.xhtml

 Table of Contents

 		
 graphtools

 		
 Installation

 		
 Installation with pip

 		
 Installation from source

 		
 Reference

 		
 API

 		
 Graph Classes

 		
 Base Classes

 		
 Utilities

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif
